
ESTUDIO DEL COMPORTAMIENTO DINÁMICO DE LOS
CIRCUITOS MEMRISTIVOS Y SU SINCRONIZACIÓN A

TRAVÉS DE LA SIMULACIÓN NUMÉRICA USANDO PYTHON

STUDY OF THE DYNAMIC BEHAVIOR OF MEMRISTIVE
CIRCUITS AND THEIR SYNCHRONIZATION THROUGH

NUMERICAL SIMULATION USING PYTHON

123

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Edición 4, páginas 20

 ESTUDIO DEL COMPORTAMIENTO DINÁMICO DE LOS
CIRCUITOS MEMRISTIVOS Y SU SINCRONIZACIÓN A TRAVÉS

DE LA SIMULACIÓN NUMÉRICA USANDO PYTHON

STUDY OF THE DYNAMIC BEHAVIOR OF MEMRISTIVE
CIRCUITS AND THEIR SYNCHRONIZATION THROUGH

NUMERICAL SIMULATION USING PYTHON

Ilbay - Paca, Juan1;
Rentería - Bustamante, Leonardo2

1Universidad Nacional de Chimborazo, Ecuador, joilbay.felc@unach.edu.ec
2Universidad Nacional de Chimborazo, Ecuador, leonardo.renteria@unah.edu.ec

RESUMEN

Este estudio investiga el comportamiento dinámico y las propiedades de sincronización de los circuitos
memristivos mediante simulaciones numéricas utilizando Python. Los circuitos memristivos, conocidos por sus
características no lineales y dependientes de la memoria, son de gran interés para aplicaciones en computación
neuromórfica y comunicaciones seguras. La investigación empleó modelos matemáticos de memristores y utilizó
las bibliotecas computacionales de Python para simular la dinámica de los circuitos y analizar los mecanismos
de sincronización en sistemas acoplados. La metodología incluyó la construcción de modelos basados en
ecuaciones diferenciales, su resolución numérica mediante el método de Runge-Kutta y la visualización de los
resultados. Se observaron y analizaron comportamientos clave, como oscilaciones periódicas y estados caóticos,
y se estudiaron las propiedades de sincronización simulando circuitos acoplados. Se exploraron tres modelos
representativos: Chua-Stanford, Memductor y un modelo experimental basado en Chua. Los resultados indican
que los memristores inducen un comportamiento de histéresis que amplifica la complejidad dinámica y facilita la
sincronización de sistemas inicialmente no sincronizados a través de un factor de acoplamiento. Con el tiempo,
los circuitos evolucionan hacia un comportamiento coherente, demostrando cómo el caos puede ser controlado
y sincronizado. Finalmente, este estudio demuestra la utilidad de las simulaciones basadas en Python para
avanzar en la comprensión del comportamiento de los circuitos memristivos y sus posibles aplicaciones en
sistemas electrónicos y computacionales.

Palabras clave: Circuitos de Chua, Memristores, Python, Sincronización, Histéresis, Memductor.

124

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Edición 4, páginas 20

ABSTRACT

This study investigates the dynamic behavior and synchronization properties of memristive circuits through
numerical simulations using Python. Memristive circuits, known for their non-linear and memory-dependent
characteristics, are of significant interest for applications in neuromorphic computing and secure
communications. The research employed mathematical models of memristors and used Python’s
computational libraries to simulate circuit dynamics and analyze synchronization mechanisms in coupled
systems. The methodology involved constructing differential equation-based models, solving them numerically
using the Runge-Kutta method, and visualizing the results. Key behaviors such as periodic oscillations, and
chaotic states were observed and analyzed, and synchronization properties were studied by simulating coupled
circuits. Three representative models are explored: Chua-Stanford, Memductor, and an experimental Chua-
based model. The results indicate that memristors induce hysteresis behavior, which amplifies dynamic
complexity and facilitates synchronization of initially unsynchronized systems through a coupling factor. Over
time, the circuits evolve towards coherent behavior, demonstrating how chaos can be controlled and
synchronized. Finally, this study demonstrates the utility of Python-based simulations in advancing the
understanding of memristive circuit behavior and their potential applications in electronic and computational
systems.

Keywords: Chua circuits, Memristors, Synchronization, Hysteresis, Memductor, Python.

Recibido: Agosto 2024 Aceptado: Diciembre 2024
Received: August 2024 Accepted: December 2024

125

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

1. INTRODUCCIÓN

Los circuitos memristivos han surgido como un área
crucial de estudio dentro de la electrónica moderna
debido a sus propiedades únicas y aplicaciones
potenciales en campos como la computación
neuromórfica, el almacenamiento de memoria y la
computación analógica. El memristor,
conceptualizado originalmente por Leon Chua en
1971, es un elemento de circuito pasivo no lineal que
vincula la carga eléctrica y el flujo magnético [1],
Fig.1.

Fig. 1: Estructura del memristor [2].

A diferencia de los elementos de un circuito
tradicionales (resistencias, condensadores e
inductores), los memristores exhiben un
comportamiento dependiente de la memoria, lo que
les permite "recordar" sus estados anteriores cuando
se corta la energía. Esta característica los hace
particularmente prometedores para crear circuitos
que pueden imitar redes neuronales biológicas y
sistemas complejos [3].
A este comportamiento se lo denomina histéresis
Fig.2, presenta una forma de lazo cerrado y muestra
la relación entre el voltaje aplicado (eje x) y la
corriente resultante (eje y). A medida que el voltaje
cambia de dirección, la curva no sigue la misma
trayectoria evidenciando que la resistencia cambia
en función de la carga acumulada, y la corriente no
retorna a su posición original al invertir el voltaje [1].

Fig. 2: Histéresis clásica del memristor

El comportamiento dinámico de los circuitos
memristivos involucra interacciones intrincadas
influenciadas por sus propiedades no lineales, lo que
resulta en dinámicas ricas y complejas [4]. Estas
dinámicas pueden exhibir comportamientos como
oscilaciones, bifurcaciones y respuestas caóticas, lo
que hace que su estudio sea crucial para avanzar en
el conocimiento de los fenómenos de sincronización
y el diseño de sistemas electrónicos robustos. Para
crear un circuito memristivo caótico, basta con
reemplazar el diodo de Chua en un circuito de Chua
por un memristor, Fig. 3.

Fig. 3: Circuito de Chua con memristor [5].

Por otro lado, la sincronización, es un fenómeno en
el que dos o más sistemas alinean su dinámica a
través del acoplamiento o la interacción. Esta
desempeña un papel esencial en campos que van
desde las comunicaciones seguras hasta la
sincronización neuronal en la actividad cerebral [6].
La sincronización de circuitos caóticos memristivos
o no, se da lugar cuando se interconecta dos o más
circuitos idénticos a través de una resistencia de
acoplamiento Fig.4.

Fig. 4: Circuitos caóticos sincronizados

Dado el creciente interés en las aplicaciones de
circuitos memristivos para comprender mejor su
comportamiento, el objetivo de este artículo es
examinar la dinámica de los circuitos memristivos,
identificar los mecanismos de sincronización y
demostrar cómo las simulaciones numéricas pueden
ofrecer información sobre su funcionalidad. En este

126

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

estudio se utilizó el lenguaje de programación
Python que con sus bibliotecas versátiles como
NumPy, SciPy y Matplotlib, proporciona una
plataforma poderosa para modelar, analizar y
visualizar sistemas complejos [7].

2. TRABAJOS RELACIONADOS

La exploración de circuitos memristivos ha ganado
considerable atención en los últimos años debido a
sus potenciales aplicaciones en áreas como la
ingeniería neuromórfica, la comunicación basada en
el caos y el modelado de sistemas complejos. Varios
investigadores han profundizado en las propiedades
dinámicas y los comportamientos de sincronización
de estos circuitos, contribuyendo al creciente cuerpo
de conocimientos.

Ali et al. [8] realizaron un estudio exhaustivo sobre el
modelado basado en memristores para aplicaciones
neuromórficas. Esta investigación enfatizó la
capacidad del memristor para emular la plasticidad
sináptica, una característica esencial para
desarrollar redes neuronales artificiales
energéticamente eficientes. Los autores utilizaron
técnicas de simulación para demostrar cómo se
podían integrar elementos memristivos en sistemas
neuromórficos, destacando su potencial para reducir
el consumo de energía y mejorar la adaptabilidad en
las implementaciones de hardware. Este trabajo
sentó las bases de cómo se podían aprovechar los
memristores para crear sistemas computacionales
inspirados en el cerebro.

Batista et al. [9] se centró en la sincronización de
circuitos memristivos caóticos, empleando
simulaciones numéricas para investigar cómo los
mecanismos de acoplamiento podrían alinear el
comportamiento de los componentes individuales. El
estudio reveló que estrategias de acoplamiento
específicas, como la retroalimentación lineal y no
lineal, fueron efectivas para lograr la sincronización
entre sistemas caóticos. Esta investigación
proporcionó información crítica para diseñar
circuitos con estabilidad y rendimiento mejorados,
particularmente relevante para aplicaciones donde
se necesita una actividad coordinada entre circuitos,
como en el procesamiento distribuido y la
transmisión segura de datos.

Bao et al. [10] ampliaron la comprensión del
comportamiento dinámico de los circuitos
memristivos mediante el análisis de sus propiedades
caóticas. Los investigadores utilizaron simulaciones

numéricas para explorar la influencia de las
condiciones iniciales variables y los cambios de
parámetros en el comportamiento del circuito. El
estudio demostró que los circuitos memristivos
podrían exhibir patrones caóticos complejos, que
podrían aprovecharse para aplicaciones prácticas
como la generación de números aleatorios,
algoritmos de cifrado y sistemas de comunicación
seguros. Esta investigación subrayó la importancia
de comprender y controlar el comportamiento
caótico para aprovechar las capacidades únicas de
los circuitos memristivos.

Muthuswamy y Chua [5] contribuyeron con una
exploración fundamental de la dinámica no lineal
presente en circuitos basados en memristores,
particularmente sistemas oscilatorios. Su
investigación ilustró cómo estos circuitos podrían
exhibir fenómenos como bifurcaciones y caos, que
son características de los sistemas dinámicos
complejos. Al simular estos comportamientos, el
estudio proporcionó información crucial sobre las
condiciones bajo las cuales los circuitos memristivos
podrían pasar de estados oscilatorios estables a
regímenes caóticos. Esta comprensión es esencial
para diseñar circuitos que puedan evitar o
aprovechar el comportamiento caótico, según la
aplicación prevista.

Estudios adicionales han explorado las aplicaciones
y el control de la dinámica de los memristores en
contextos más amplios. Por ejemplo, los
investigadores han demostrado cómo se pueden
incorporar los memristores al hardware para tareas
que requieren aprendizaje adaptativo y
procesamiento en tiempo real. Se ha demostrado
que la naturaleza dependiente de la memoria del
memristor facilita el comportamiento dependiente
del estado, lo que lo hace adecuado para
aplicaciones en filtros adaptativos y almacenamiento
de memoria no volátil.

En conjunto, estos estudios subrayan la naturaleza
multifacética de la investigación de circuitos
memristivos, desde sus propiedades fundamentales
hasta sus aplicaciones prácticas. Los hallazgos
destacan que la sincronización y el análisis del
comportamiento dinámico son áreas clave de
enfoque que continúan inspirando más
investigaciones.
Estos trabajos proporcionan una base sólida para el
presente estudio que busca ampliar la comprensión
del comportamiento y la sincronización de circuitos
memristivos a través de simulaciones numéricas

127

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

avanzadas utilizando Python. Este enfoque permite
una exploración detallada de la dinámica de
circuitos, ofreciendo conocimientos prácticos para el
diseño y desarrollo de sistemas electrónicos y
computacionales innovadores.

3. MATERIALES Y MÉTODOS

Este trabajo tuvo como objetivo explorar el
comportamiento dinámico y las propiedades de
sincronización de circuitos memristivos a través de
simulaciones numéricas utilizando Python. La
metodología abarca procedimientos detallados,
materiales y un diseño experimental para garantizar
la reproducibilidad de los resultados.

3.1 Procedimiento
El estudio se llevó a cabo en una serie de pasos
estructurados, como se describe a continuación:

Modelado de circuitos: Los modelos de circuitos
memristivos se construyeron en función de
representaciones matemáticas previamente
validadas de memristores, específicamente
utilizando las ecuaciones diferenciales no lineales
que describen su relación voltaje-corriente, las
cuales se introducen en el circuito de Leon Chua
para estudiar cómo afectan las propiedades caóticas.

 Circuito de Chua

El circuito de Chua es un sistema no lineal que
genera un comportamiento caótico, y su dinámica
está gobernada por un conjunto de ecuaciones
diferenciales adimensionales, que describen el
voltaje del primer condensador , del segundo
condensador y la corriente del inductor, como se
muestra a continuación:

Además de la función no lineal

Donde son constantes que dependen de
los valores específicos del circuito.

Las ecuaciones descritas capturan cómo los voltajes
y corrientes en el circuito evolucionan con el tiempo,
y la presencia de no linealidades hace que el sistema
muestre un comportamiento caótico para ciertos
valores de los parámetros [5].

Configuración de simulación numérica: Se eligió
Python como el software principal debido a sus
amplias bibliotecas para el cálculo numérico y la
visualización, así como por su naturaleza libre y
abierta. Se emplearon bibliotecas como NumPy,
SciPy y Matplotlib para realizar cálculos, resolver
ecuaciones diferenciales y representar gráficamente
los resultados.
Configuración de parámetros iniciales: Las
condiciones iniciales y los valores de los parámetros
(por ejemplo, rango de resistencia, estado inicial de
memristividad y voltaje de entrada) se definieron
cuidadosamente en función de la literatura para
reflejar escenarios típicos del mundo real.
Ejecución de la simulación: Las ecuaciones
diferenciales que describen los circuitos memristivos
se resolvieron utilizando métodos de integración
numérica, como el método Runge-Kutta,
implementado a través de la función odeint en SciPy.
Esto permitió la simulación del comportamiento del
circuito durante un período de tiempo determinado.
Análisis de sincronización: Se simularon circuitos
acoplados para evaluar las propiedades de
sincronización. Se analizó el bloqueo de fase y
frecuencia entre circuitos mediante la
representación gráfica de la evolución temporal de
los estados memristivos.
Registro y análisis de datos: Se registraron y
analizaron los datos de salida para identificar
comportamientos como oscilaciones periódicas y
estados caóticos. Se generaron gráficos y métricas
numéricas para visualización e interpretación.

3.2 Materiales
El estudio utilizó los siguientes materiales:
Software: Python (versión 3.9+): para codificar y
ejecutar simulaciones.
Bibliotecas: NumPy (para operaciones numéricas),
SciPy (para solucionadores de ecuaciones
diferenciales), Matplotlib (para visualización de
datos) y Seaborn (para mejorar los gráficos).
Hardware: Una estación de trabajo estándar
equipada con un procesador Intel i7, 16 GB de RAM
y un SSD de 1 TB para el almacenamiento y
procesamiento de datos.

(1)

 (2)

128

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

3.3 Diseño experimental
El diseño experimental incluyó los siguientes
componentes:

Modelo de simulación: El estudio involucró
modelos de circuito único y de circuitos acoplados.
Se llevaron a cabo simulaciones de circuito único
para comprender el comportamiento independiente,
mientras que se utilizaron modelos acoplados para
investigar las propiedades de sincronización.

Selección de parámetros: Los principales
parámetros en el experimento incluyeron la forma de
onda del voltaje de entrada (entrada sinusoidal o de
paso periódico), las condiciones iniciales de
memristancia y la fuerza de acoplamiento entre
circuitos en modelos sincronizados.

Métricas de salida: Las métricas principales
incluyeron histéresis del memristor, la evolución de
la memristancia, voltajes y corrientes a lo largo del
tiempo y la sincronización, según el tipo de análisis.
El diseño experimental se estructuró para replicar las
condiciones del mundo real lo más fielmente posible,
manteniendo al mismo tiempo un entorno controlado
para observar respuestas específicas de los circuitos
memristantes.

Siguiendo el procedimiento descrito, utilizando los
materiales especificados y adhiriendo al diseño
experimental, este estudio tuvo como objetivo
analizar y documentar exhaustivamente el
comportamiento dinámico y los mecanismos de
sincronización de los circuitos memristivos utilizando
Python.

4. RESULTADOS Y DISCUSIÓN

En esta sección se muestran los modelos que se
derivan de la aplicación de las leyes de Kirchhoff al
circuito original de Chua, reemplazando el diodo no
lineal por un memristor. Este cambio introduce
ecuaciones diferenciales que describen cómo
evolucionan los voltajes y corrientes, incorporando la
dinámica no lineal del memristor. Las ecuaciones
incluyen términos de acoplamiento dinámico para
estudiar la sincronización entre sistemas
inicialmente desincronizados, manteniendo las
propiedades caóticas del diseño original. A
continuación, se presentan los resultados obtenidos
a partir de tres modelos diferentes: Stanford,
Memristico-Chua y Memductor.

Modelo de Stanford

Representa la dinámica de memristores basada en
la evolución del gap físico en un filamento, con una
dependencia no lineal del voltaje y parámetros
térmicos, su histéresis, Fig.5, muestra una transición
suave en la relación corriente-voltaje.

Fig. 5: Histéresis del memristor - modelo de Stanford.
R_on= 100, R_off= 1600, = 0.03 y β= 0.9 v(t)= Asin
(2π.f.t), A= 1, f= 1Hz.

El sistema de ecuaciones que describe el modelo de
Stanford es el siguiente [11]:

El atractor caótico del modelo presenta una
estructura compleja Fig.6 y refleja la interacción
entre el voltaje aplicado y el gap físico del memristor.
A medida que varía el campo eléctrico, el atractor
muestra una trayectoria no lineal que oscila de
manera irregular, con un comportamiento
impredecible y una dependencia marcada de las
condiciones iniciales:

(3)

 (4)

129

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Fig. 6: Atractor caótico del modelo Chua-Stanford.

 , ,

 .

Para corroborar el comportamiento caótico de la
sincronización del modelo de Stanford, se plantean
diferentes condiciones iniciales para dos circuitos
idénticos conectados entre sí, Fig.7, asegurando que
comiencen desde estados distintos y, mediante un
acoplamiento adecuado, logren sincronizarse con el
tiempo.

Fig. 7: Sincronización de dos circuitos – modelo de
Stanford

Las condiciones iniciales son:

Y las ecuaciones para la sincronización de sistemas
caóticos son:

Sistema 1

Sistema 2

Para la sincronización, se emplea un factor de
acoplamiento basado en la resistencia y ajustando la
evolución del gap físico, se observa cómo ambos
sistemas, aunque inicialmente diferentes, logran
sincronizarse y seguir trayectorias comunes Fig.8.

Fig. 8: Señales sincronizadas partiendo de condiciones
iniciales distintas, modelo de Stanford con factor de
acoplamiento K=1.1.

Modelo memristivo de Chua

Describe sistemas electrónicos no lineales con
memoria y caos, destacando una característica
función que introduce múltiples estados de equilibrio

(5)

(6)

130

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

y trayectorias complejas. Es el modelo conceptual
base para los memristores, su histéresis Fig.9,
refleja una dinámica caótica, con múltiples puntos de
equilibrio y una dependencia fuerte de las
características no lineales del sistema, el cálculo de
la histéresis utiliza los mismos parámetros descritos
en el modelo de Stanford.

Fig. 9: Histéresis del memristor - modelo de Chua

Sistema de ecuaciones del modelo memristivo de
Chua [12]:

El atractor caótico Fig.10, muestra una trayectoria
compleja y oscilatoria, que cambia de forma
impredecible debido a su alta sensibilidad a las
condiciones iniciales .
Representa el comportamiento caótico del sistema,
caracterizado por patrones irregulares y no
repetitivos.

Fig. 10: Atractor caótico del modelo de Chua.

 .

Sincronización de dos sistemas caóticos.

Se considera la sincronización como una
herramienta para validar el estado caótico del
sistema Fig.11; partiendo de condiciones iniciales
diferentes, se emplea una interacción entre los
sistemas controlada por un término de acoplamiento
en las ecuaciones diferenciales. Este proceso
asegura que, a pesar de la complejidad y la
naturaleza caótica de los atractores, ambos
sistemas pueden converger hacia trayectorias
sincronizadas con el tiempo, evidenciando la
estabilidad relativa en un contexto de caos.

Fig. 11: Sincronización de dos circuitos – modelo de
Chua.

Ecuaciones para la sincronización de sistemas
caóticos

Condiciones iniciales:

(7)

 (8)

131

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Sistema 1

Sistema 2

La sincronización en el modelo de Chua Fig.12, se
logra mediante un factor de acoplamiento que fuerza
a dos sistemas a seguir trayectorias similares,
incluso con condiciones iniciales diferentes. Esto
permite que ambos sistemas se alineen con el
tiempo, superando su comportamiento caótico.

Fig. 12: Señales sincronizadas partiendo de condiciones

iniciales distintas-modelo de Chua. K=0.55e4.

Modelo Memductor

Es un modelo general de memristor que enfatiza la
memoria intrínseca basada en la integración de
carga o flujo, con una respuesta lineal local y un
comportamiento dinámico ajustable según la señal
aplicada, su histéresis muestra un bucle más
estrecho y una fuerte dependencia del historial del

sistema, con una memoria que modula la relación
voltaje-corriente de manera distintiva Fig.13.
Igualmente, para el cálculo de la histéresis se utilizan
los parámetros descritos en el modelo de Stanford.

Fig. 13: Histéresis del memristor - modelo de memductor

El sistema de ecuaciones del modelo Memductor es
el siguiente [13]:

El atractor caótico del Memductor es más
impredecible comparado con los otros dos modelos
Fig.14, pero sigue mostrando un comportamiento no
lineal y dependiente de la memoria del sistema. Su
forma refleja la evolución controlada por la carga o
flujo, con trayectorias complejas que se adaptan a
las condiciones impuestas por el acoplamiento.

Fig. 14: Atractor caótico del modelo de memristor. ,

, , , , y .

Sincronización de dos sistemas caoticos

Para el Memductor, la sincronización se plantea
iniciando ambos sistemas desde estados iniciales
diferentes y permitiéndoles interactuar mediante un
acoplamiento proporcional a la memoria intrínseca

(9)

(10)

(11)

132

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

del sistema. Este enfoque demuestra cómo, incluso
en sistemas que dependen fuertemente de su
historial, las trayectorias pueden alinearse en
función del tiempo Fig.15.

Fig. 15: Sincronización de dos circuitos – modelo de
memristor.

Ecuaciones para la sincronización de sistemas
caóticos.

Condiciones iniciales:

Sistema 1

Sistema 2

Para sincronizar el modelo se aplica un factor de
acoplamiento basado en la memoria intrínseca del
sistema, ambos atractores logran sincronizarse a lo
largo del tiempo Fig.16, independientemente de sus
condiciones iniciales, mostrando que el sistema
puede estabilizarse con el acoplamiento adecuado.

Fig. 16: Señales sincronizadas partiendo de condiciones
iniciales distintas-modelo de Memristor. K=3

DISCUSIÓN

Las simulaciones de los modelos estudiados
evidencian la presencia de atractores caóticos en las
proyecciones bidimensionales, destacando la
complejidad de sus dinámicas. En todos los casos,
se observó la sincronización de las trayectorias en
de las variables tras un periodo transitorio gracias al
término de acoplamiento dinámico, asegurando
coherencia en el estado sincronizado. Las gráficas
bidimensionales resaltan la estructura compleja de
los atractores y validan la efectividad del diseño, al
comparar sistemas acoplados y no acoplados.

Modelo Chua-Stanford:
La sincronización de los atractores caóticos logrado
mediante un factor de acoplamiento, confirma la
viabilidad de estabilizar sistemas caóticos con
memristores. Este hallazgo es consistente con
estudios previos, como los de Di Marco et al., y
expande el conocimiento sobre la aplicación de
sistemas memristivos en fenómenos no lineales.

Modelo Experimental Basado en Chua:
La sincronización observada en atractores
complejos es consistente con los trabajos de
Muthuswamy y Chua, demostrando la viabilidad
experimental de estos sistemas en entornos reales.
La sincronización eficaz entre los atractores destaca
la capacidad de los memristores para estabilizar
dinámicas caóticas.

Modelo Memductor:
El memductor demuestra su capacidad para generar
atractores bidimensionales y curvas de histéresis,
con la sincronización de los atractores mostrando la
viabilidad de controlar el caos mediante
acoplamientos basados en memoria. Estos

(12)

(13)

133

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

resultados respaldan hallazgos previos y amplían su
aplicación en sistemas controlados.

5. CONCLUSIÓN

Los modelos estudiados resaltan la capacidad de
Python como herramienta clave para el análisis y
desarrollo de sistemas dinámicos complejos,
destacando su utilidad en la implementación de
simulaciones numéricas, la resolución de
ecuaciones diferenciales y la visualización de
atractores caóticos mediante bibliotecas como
NumPy, Matplotlib y SciPy. Estas herramientas
permitieron abordar las dinámicas no lineales
introducidas por los memristores y estudiar la
sincronización de variables específicas en sistemas
caóticos, abriendo potenciales aplicaciones en
criptografía, comunicaciones seguras y análisis de
redes neuronales. Python no solo facilitó el manejo
eficiente de estos modelos, sino que también
evidenció su potencial como plataforma esencial en
la investigación científica de sistemas no lineales.
Como trabajos futuros, se propone desarrollar
bibliotecas personalizadas que automaticen el
análisis de modelos dinámicos y explorar la
integración de Python con tecnologías como
inteligencia artificial y computación simbólica para
optimizar la resolución de problemas matemáticos
complejos, posicionando a Python como una
herramienta interdisciplinaria en matemáticas
avanzadas y modelado computacional.

6. REFERENCIAS BIBLIOGRÁFICAS
[1] L. Chua, “Memristor-The missing circuit

element,” IEEE Transactions on Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971,
doi: 10.1109/TCT.1971.1083337.

[2] C. O. Marambio, K. C. Valenzuela, and A. R.
Estay, “Memristor. Una perspectiva general,”
Interciencia, vol. 39, no. 7, pp. 458–467, Jul.
2014.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart,
and R. S. Williams, “The missing memristor
found,” Nature, vol. 453, no. 7191, pp. 80–83,
May 2008, doi: 10.1038/nature06932.

[4] A. Adamatzky and L. Chua, Eds., Memristor
Networks. Cham: Springer International
Publishing, 2014. doi: 10.1007/978-3-319-
02630-5.

[5] B. MUTHUSWAMY and L. O. CHUA,
“SIMPLEST CHAOTIC CIRCUIT,”
International Journal of Bifurcation and
Chaos, vol. 20, no. 05, pp. 1567–1580, May
2010, doi: 10.1142/S0218127410027076.

[6] Y. V. Pershin and M. Di Ventra, “Memory
effects in complex materials and nanoscale
systems,” Adv Phys, vol. 60, no. 2, pp. 145–
227, Apr. 2011, doi:
10.1080/00018732.2010.544961.

[7] E. Miranda and J. Suñé, “Memristors for
Neuromorphic Circuits and Artificial
Intelligence Applications,” Materials, vol. 13,
no. 4, p. 938, Feb. 2020, doi:
10.3390/ma13040938.

[8] M. Mayacela, L. Rentería, L. Contreras, and
S. Medina, “Comparative Analysis of
Reconfigurable Platforms for Memristor
Emulation,” Materials, vol. 15, no. 13, p.
4487, Jun. 2022, doi: 10.3390/ma15134487.

[9] L. Rentería, M. Mayacela, K. Torres, W.
Ramírez, R. Donoso, and R. Acosta, “FPGA-
Based Numerical Simulation of the Chaotic
Synchronization of Chua Circuits,”
Computation, vol. 12, no. 9, p. 174, Aug.
2024, doi: 10.3390/computation12090174.

[10] E. Bilotta, F. Chiaravalloti, and P. Pantano,
“Spontaneous Synchronization in Two
Mutually Coupled Memristor-Based Chua’s
Circuits: Numerical Investigations,” Math
Probl Eng, vol. 2014, pp. 1–15, 2014, doi:
10.1155/2014/594962.

 [11] M. Di Marco, M. Forti, G. Innocenti, and A.
Tesi, “Harmonic Balance Design of
Oscillatory Circuits Based on Stanford
Memristor Model,” IEEE Access, vol. 11, pp.
127431–127445, 2023, doi:
10.1109/ACCESS.2023.3331107.

[12] L. Xiong, X. Zhang, S. Teng, L. Qi, and P.
Zhang, “Detecting Weak Signals by Using
Memristor-Involved Chua’s Circuit and
Verification in Experimental Platform,”
International Journal of Bifurcation and
Chaos, vol. 30, no. 13, p. 2050193, Oct.
2020, doi: 10.1142/S021812742050193X.

[13] B. MUTHUSWAMY, “IMPLEMENTING
MEMRISTOR BASED CHAOTIC
CIRCUITS,” International Journal of
Bifurcation and Chaos, vol. 20, no. 05, pp.
1335–1350, May 2010, doi:
10.1142/S0218127410026514.

134

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

ANEXO:

Anexo 1: Código histéresis del memristor – Modelo Stanford

import numpy as np
import matplotlib.pyplot as plt

Parámetros
R_on = 100 # Resistencia en estado "on"
R_off = 1600 # Resistencia en estado "off"
alpha = 0.03 # Velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

Tiempo y voltaje senoidal
tiempo = np.arange(0, 2, 0.01)
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)

Inicialización de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q = 0

Función de resistencia
def calcular_resistencia_stanford(q, R_on, R_off, beta):
 return R_on + (R_off - R_on) * (1 - np.exp(-beta * np.abs(q)))

Simulación
for i, V in enumerate(voltaje_senoidal):
 q += alpha * V * (1 - beta * np.abs(q)) # carga
 R = calcular_resistencia_stanford(q, R_on, R_off, beta)
 corriente[i] = V / R

Gráfica
plt.figure(figsize=(10, 5))
plt.plot(voltaje_senoidal, corriente, label="Stanford", color="blue")
plt.xlabel("Voltaje (V)")
plt.ylabel("Corriente (A)")
plt.title("Curva de Histéresis - Modelo Stanford")
plt.grid(True)
plt.legend()
plt.show()

135

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Anexo 2: Código sincronización de dos circuitos caóticos – Modelo Stanford

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Parámetros del sistema
alpha = 10
beta = 15
a = -1.27
b = -0.68
q = 1.6e-19
k = 1.38e-23
T0 = 300
Ea_g = 0.8
a0 = 1e-10
l = 10e-9
gamma0 = 2.5
g_min = 0.5e-9
g_max = 6.0e-9
V0 = 1.0
Constante de acoplamiento
coupling_strength = 1.1

Función no lineal
def f(x):
 return b * x + 0.5 * (a - b) * (np.abs(x + 1) - np.abs(x - 1))

Sincronización
def synchronized_system(t, state):
 x1, y1, z1, g1, x2, y2, z2, g2 = state

 # gaps
 g1 = np.clip(g1, g_min, g_max)
 g2 = np.clip(g2, g_min, g_max)

 # Sistema 1
 dx1_dt = alpha * (y1 - x1 - f(x1))
 dy1_dt = x1 - y1 + z1
 dz1_dt = -beta * y1
 dg1_dt = -np.exp(-q * Ea_g * g1 / (k * T0)) * np.exp(q * a0 * gamma0 / (l * k * T0) * x1)

 # Sistema 2
 dx2_dt = alpha * (y2 - x2 - f(x2))
 dy2_dt = x2 - y2 + z2
 dz2_dt = -beta * y2 + coupling_strength * (z1 - z2)
 dg2_dt = -np.exp(-q * Ea_g * g2 / (k * T0)) * np.exp(q * a0 * gamma0 / (l * k * T0) * x2)

 return [dx1_dt, dy1_dt, dz1_dt, dg1_dt, dx2_dt, dy2_dt, dz2_dt, dg2_dt]

Condiciones iniciales
x0_m, y0_m, z0_m, g0_m = 0.1, 0, 0, g_min
x0_s, y0_s, z0_s, g0_s = 0.2, 0.1, -0.1, g_max
initial_conditions = [x0_m, y0_m, z0_m, g0_m, x0_s, y0_s, z0_s, g0_s]

136

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Parámetros
t_span = (0, 50)
t_eval = np.linspace(t_span[0], t_span[1], 5000)

Resolución
solution = solve_ivp(
 synchronized_system,
 t_span,
 initial_conditions,
 t_eval=t_eval,
 method="RK45"
)
t = solution.t
x1, y1, z1, g1, x2, y2, z2, g2 = solution.y

Gráficas
plt.figure(figsize=(12, 10))
Maestro-esclavo (x1 vs x2 y x2 vs x1)
plt.subplot(2, 2, 1)
plt.plot(x1, y1, 'b', label="x1")
plt.plot(x2, y2, 'r', label="x2 ")
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('Espacio de fases (x1 vs x2)')
plt.legend()
plt.grid(True)
Sincronización
plt.subplot(2, 2, 2)
plt.plot(t, z1, 'b', label="z1")
plt.plot(t, z2, 'r', label="z2 ")
plt.xlabel('Tiempo')
plt.ylabel('z (t)')
plt.title('Sincronización de z1 y z2')
plt.legend()
plt.grid(True)

Gap
plt.subplot(2, 2, 3)
plt.plot(t, g1, 'b', label="g1")
plt.plot(t, g2, 'r', label="g2 ")
plt.xlabel('Tiempo (s)')
plt.ylabel('g')
plt.title('Evolución del gap (g)')
plt.legend()
plt.grid(True)

Atractores 3D
ax = plt.subplot(2, 2, 4, projection='3d')
ax.plot(x1, y1, z1, 'b', label="x1")
ax.plot(x2, y2, z2, 'r', label="x2")
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('z')
ax.set_title('Atractores 3D')
ax.legend()
ax.grid(True)

plt.tight_layout()
plt.show()

137

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Anexo 3: Código histéresis del memristor – Modelo Chua

import numpy as np
import matplotlib.pyplot as plt

Parámetros
R_on = 100 # Resistencia en estado "on"
R_off = 1600 # Resistencia en estado "off"
alpha = 0.03 # Controla la velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

Tiempo y voltaje senoidal
tiempo = np.arange(0, 2, 0.01)
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)

Inicialización de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q = 0

Función de resistencia
def calcular_resistencia_chua(q, R_on, R_off):
 return R_on + (R_off - R_on) * (1 - q**2)

Simulación
corriente_chua = np.zeros_like(voltaje_senoidal)
q = 0

for i, V in enumerate(voltaje_senoidal):
 q += alpha * V * (1 - beta * q**2)
 R = calcular_resistencia_chua(q, R_on, R_off)
 corriente_chua[i] = V / R

Gráfica
plt.figure(figsize=(10, 5))
plt.plot(voltaje_senoidal, corriente_chua, label="Chua", color="purple")
plt.xlabel("Voltaje (V)")
plt.ylabel("Corriente (A)")
plt.title("Curva de Histéresis - Modelo Chua")
plt.grid(True)
plt.legend()
plt.show()

138

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Anexo 4: Código sincronización de dos circuitos caóticos – Modelo Chua

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Parámetros
alpha = -0.667e-3
beta = 0.029e-3
zeta = 8200 * 47e-9
C1 = 6.8e-9
C2 = 68e-9
L = 18e-3
R = 2000

Función de memductancia
def W(phi):
 return alpha + 3 * beta * phi**2

Sistema sincronizado
def synchronized_system(t, state):
 phi1, v1_1, v2_1, iL1, phi2, v1_2, v2_2, iL2 = state

 # Sistema 1
 dphi1_dt = -v1_1 / zeta
 dv1_1_dt = (1 / C1) * ((v2_1 - v1_1) / R - W(phi1) * v1_1)
 dv2_1_dt = (1 / C2) * ((v1_1 - v2_1) / R - iL1)
 diL1_dt = v2_1 / L

 # Sistema 2
 dphi2_dt = -v1_2 / zeta
 dv1_2_dt = (1 / C1) * ((v2_2 - v1_2) / R - W(phi2) * v1_2)
 dv2_2_dt = (1 / C2) * ((v1_2 - v2_2) / R - iL2)
 diL2_dt = v2_2 / L

 # Acoplamiento
 coupling_strength = 0.55e4
 dv2_2_dt += coupling_strength * (v2_1 - v2_2)

 return [dphi1_dt, dv1_1_dt, dv2_1_dt, diL1_dt, dphi2_dt, dv1_2_dt, dv2_2_dt, diL2_dt]

Condiciones iniciales
initial_conditions = [0, 0.1, 0.1, 0, 0, -0.1, -0.1, 0]

Tiempo
t_span = (0, 0.01)
t_eval = np.linspace(t_span[0], t_span[1], 5000)

Sistema sincronizado
solution = solve_ivp(synchronized_system, t_span, initial_conditions, t_eval=t_eval,
method='RK45')
t = solution.t
phi1, v1_1, v2_1, iL1, phi2, v1_2, v2_2, iL2 = solution.y

Gráficas
plt.figure(figsize=(12, 10))

139

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Gráfico 2D: v2_1 vs v1_1 y v2_2 vs v1_2
plt.subplot(2, 2, 1)
plt.plot(v1_1, v2_1, label='Sistema 1', linewidth=0.8)
plt.plot(v1_2, v2_2, label='Sistema 2', linewidth=0.8)
plt.xlabel(r'$v_1(t)$ (V)')
plt.ylabel(r'$v_2(t)$ (V)')
plt.title('Atractor 2D: v_2 vs v_1')
plt.legend()
plt.grid(True)

Gráfico 2D: Sincronización de v2_1 y v2_2
plt.subplot(2, 2, 2)
plt.plot(t, v2_1, label='$v_{2,1}(t)$', linewidth=0.8)
plt.plot(t, v2_2, label='$v_{2,2}(t)$', linewidth=0.8)
plt.xlabel('Tiempo (s)')
plt.ylabel(r'$v_2(t)$ (V)')
plt.title('Sincronización de $v_{2,1}$ y $v_{2,2}$')
plt.legend()
plt.grid(True)

Gráfico 2D: phi1 vs iL1 y phi2 vs iL2
plt.subplot(2, 2, 3)
plt.plot(phi1, iL1, label='Sistema 1', linewidth=0.8)
plt.plot(phi2, iL2, label='Sistema 2', linewidth=0.8)
plt.xlabel(r'$\phi(t)$ (Wb)')
plt.ylabel(r'$i_L(t)$ (A)')
plt.title(r'Atractor 2D: i_L vs ϕ')
plt.legend()
plt.grid(True)

Gráfico 3D: v1_1, v2_1, phi1 y v1_2, v2_2, phi2
ax = plt.subplot(2, 2, 4, projection='3d')
ax.plot(v1_1, v2_1, phi1, color='blue', linewidth=0.5, label='Sistema 1')
ax.plot(v1_2, v2_2, phi2, color='red', linewidth=0.5, label='Sistema 2')
ax.set_xlabel(r'$v_1(t)$ (V)')
ax.set_ylabel(r'$v_2(t)$ (V)')
ax.set_zlabel(r'$\phi(t)$ (Wb)')
ax.set_title('Atractores 3D')
ax.legend()
ax.grid(True)

Título
plt.suptitle('Sincronización de Sistemas Memristivos', fontsize=14)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()

140

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Anexo 5: Código histéresis del memristor – Modelo Memductor

import numpy as np
import matplotlib.pyplot as plt

Parámetros
R_on = 100 # Resistencia en estado "on"
R_off = 1600 # Resistencia en estado "off"
alpha = 0.03 # Controla la velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

Tiempo y voltaje senoidal
tiempo = np.arange(0, 2, 0.01)
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)

Inicialización de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q = 0

Función de resistencia
def calcular_resistencia_memductor(q, V, R_on, R_off):
 return R_on + (R_off - R_on) * (1 - np.tanh(10 * V * q))

Simulación
corriente_memductor = np.zeros_like(voltaje_senoidal)
q = 0

for i, V in enumerate(voltaje_senoidal):
 q += alpha * V * (1 - beta * q**2)
 R = calcular_resistencia_memductor(q, V, R_on, R_off)
 corriente_memductor[i] = V / R

Gráfica
plt.figure(figsize=(10, 5))
plt.plot(voltaje_senoidal, corriente_memductor, label="Memductor", color="orange")
plt.xlabel("Voltaje (V)")
plt.ylabel("Corriente (A)")
plt.title("Curva de Histéresis - Modelo memductor")
plt.grid(True)
plt.legend()
plt.show()

141

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Anexo 6: Código sincronización de dos circuitos caóticos – Modelo Memductor

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Sistema de ecuaciones diferenciales
def chaotic_system(t, state):
 x, y, z, u = state
 dx_dt = 4 * x + 16 * y + 0.1 * u - 2 * x * u**2
 dy_dt = x - y + z
 dz_dt = -15 * y - 0.5 * z
 du_dt = -x
 return [dx_dt, dy_dt, dz_dt, du_dt]

Sincronización:
def synchronized_system(t, state):
 x1, y1, z1, u1, x2, y2, z2, u2 = state

 # Sistema 1
 dx1_dt = 4 * x1 + 16 * y1 + 0.1 * u1 - 2 * x1 * u1**2
 dy1_dt = x1 - y1 + z1
 dz1_dt = -15 * y1 - 0.5 * z1
 du1_dt = -x1

 # Sistema 2
 dx2_dt = 4 * x2 + 16 * y2 + 0.1 * u2 - 2 * x2 * u2**2
 dy2_dt = x2 - y2 + z2
 dz2_dt = -15 * y2 - 0.5 * z2 + 3 * (z1 - z2)
 du2_dt = -x2

 return [dx1_dt, dy1_dt, dz1_dt, du1_dt, dx2_dt, dy2_dt, dz2_dt, du2_dt]

Parámetros
t_span = (0, 48)
t_eval = np.linspace(t_span[0], t_span[1], 5000)

Condiciones iniciales
initial_conditions = [0.1, -0.1, 0.1, -0.1, -0.5, 0.2, -0.2, 0.1]

Solucion
solution = solve_ivp(
 synchronized_system,
 t_span,
 initial_conditions,
 t_eval=t_eval,
 method="RK45"
)

Solucion
t = solution.t
x1, y1, z1, u1, x2, y2, z2, u2 = solution.y

Graficas
plt.figure(figsize=(12, 10))

142

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20

Gráfico 2D: x1 vs y1 y x2 vs y2
plt.subplot(2, 2, 1)
plt.plot(x1, y1, 'b', linewidth=0.8, label="Sistema 1")
plt.plot(x2, y2, 'r', linewidth=0.8, label="Sistema 2")
plt.xlabel(r'$x(t)$')
plt.ylabel(r'$y(t)$')
plt.title(r'Atractor 2D: x vs y')
plt.legend()
plt.grid(True)

sincronización
plt.subplot(2, 2, 2)
plt.plot(t, z1, 'b', linewidth=0.8, label="z1")
plt.plot(t, z2, 'r', linewidth=0.8, label="z2")
plt.xlabel('Tiempo')
plt.ylabel(r'$z(t)$')
plt.title(r'Sincronización de z_1 y z_2')
plt.legend()
plt.grid(True)

Gráfico 2D: y1 vs u1 y y2 vs u2
plt.subplot(2, 2, 3)
plt.plot(y1, u1, 'b', linewidth=0.8, label="Sistema 1")
plt.plot(y2, u2, 'r', linewidth=0.8, label="Sistema 2")
plt.xlabel(r'$y(t)$')
plt.ylabel(r'$u(t)$')
plt.title(r'Atractor 2D: y vs u')
plt.legend()
plt.grid(True)

Gráfico 3D: x1, y1, z1 y x2, y2, z2
ax = plt.subplot(2, 2, 4, projection='3d')
ax.plot(x1, y1, z1, color='blue', linewidth=0.5, label="Sistema 1")
ax.plot(x2, y2, z2, color='red', linewidth=0.5, label="Sistema 2")
ax.set_xlabel(r'$x(t)$')
ax.set_ylabel(r'$y(t)$')
ax.set_zlabel(r'$z(t)$')
ax.set_title('Atractores 3D')
ax.legend()
ax.grid(True)

Título
plt.suptitle('Sincronización de Sistemas Caóticos', fontsize=14)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()

