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RESUMEN  
 
Este estudio investiga el comportamiento dinámico y las propiedades de sincronización de los circuitos 
memristivos mediante simulaciones numéricas utilizando Python. Los circuitos memristivos, conocidos por sus 
características no lineales y dependientes de la memoria, son de gran interés para aplicaciones en computación 
neuromórfica y comunicaciones seguras. La investigación empleó modelos matemáticos de memristores y utilizó 
las bibliotecas computacionales de Python para simular la dinámica de los circuitos y analizar los mecanismos 
de sincronización en sistemas acoplados. La metodología incluyó la construcción de modelos basados en 
ecuaciones diferenciales, su resolución numérica mediante el método de Runge-Kutta y la visualización de los 
resultados. Se observaron y analizaron comportamientos clave, como oscilaciones periódicas y estados caóticos, 
y se estudiaron las propiedades de sincronización simulando circuitos acoplados. Se exploraron tres modelos 
representativos: Chua-Stanford, Memductor y un modelo experimental basado en Chua. Los resultados indican 
que los memristores inducen un comportamiento de histéresis que amplifica la complejidad dinámica y facilita la 
sincronización de sistemas inicialmente no sincronizados a través de un factor de acoplamiento. Con el tiempo, 
los circuitos evolucionan hacia un comportamiento coherente, demostrando cómo el caos puede ser controlado 
y sincronizado. Finalmente, este estudio demuestra la utilidad de las simulaciones basadas en Python para 
avanzar en la comprensión del comportamiento de los circuitos memristivos y sus posibles aplicaciones en 
sistemas electrónicos y computacionales. 
 
Palabras clave: Circuitos de Chua, Memristores, Python, Sincronización, Histéresis, Memductor. 
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ABSTRACT 
 
This study investigates the dynamic behavior and synchronization properties of memristive circuits through 
numerical simulations using Python. Memristive circuits, known for their non-linear and memory-dependent 
characteristics, are of significant interest for applications in neuromorphic computing and secure 
communications. The research employed mathematical models of memristors and used Python’s 
computational libraries to simulate circuit dynamics and analyze synchronization mechanisms in coupled 
systems. The methodology involved constructing differential equation-based models, solving them numerically 
using the Runge-Kutta method, and visualizing the results. Key behaviors such as periodic oscillations, and 
chaotic states were observed and analyzed, and synchronization properties were studied by simulating coupled 
circuits. Three representative models are explored: Chua-Stanford, Memductor, and an experimental Chua-
based model. The results indicate that memristors induce hysteresis behavior, which amplifies dynamic 
complexity and facilitates synchronization of initially unsynchronized systems through a coupling factor. Over 
time, the circuits evolve towards coherent behavior, demonstrating how chaos can be controlled and 
synchronized. Finally, this study demonstrates the utility of Python-based simulations in advancing the 
understanding of memristive circuit behavior and their potential applications in electronic and computational 
systems. 
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1. INTRODUCCIÓN 
 
Los circuitos memristivos han surgido como un área 
crucial de estudio dentro de la electrónica moderna 
debido a sus propiedades únicas y aplicaciones 
potenciales en campos como la computación 
neuromórfica, el almacenamiento de memoria y la 
computación analógica. El memristor, 
conceptualizado originalmente por Leon Chua en 
1971, es un elemento de circuito pasivo no lineal que 
vincula la carga eléctrica y el flujo magnético [1], 
Fig.1.  
 

 
Fig. 1: Estructura del memristor [2]. 

 
A diferencia de los elementos de un circuito 
tradicionales (resistencias, condensadores e 
inductores), los memristores exhiben un 
comportamiento dependiente de la memoria, lo que 
les permite "recordar" sus estados anteriores cuando 
se corta la energía. Esta característica los hace 
particularmente prometedores para crear circuitos 
que pueden imitar redes neuronales biológicas y 
sistemas complejos [3].  
A este comportamiento se lo denomina histéresis 
Fig.2, presenta una forma de lazo cerrado y muestra 
la relación entre el voltaje aplicado (eje x) y la 
corriente resultante (eje y). A medida que el voltaje 
cambia de dirección, la curva no sigue la misma 
trayectoria evidenciando que la resistencia cambia 
en función de la carga acumulada, y la corriente no 
retorna a su posición original al invertir el voltaje [1].  
 

 
Fig. 2: Histéresis clásica del memristor  

El comportamiento dinámico de los circuitos 
memristivos involucra interacciones intrincadas 
influenciadas por sus propiedades no lineales, lo que 
resulta en dinámicas ricas y complejas [4]. Estas 
dinámicas pueden exhibir comportamientos como 
oscilaciones, bifurcaciones y respuestas caóticas, lo 
que hace que su estudio sea crucial para avanzar en 
el conocimiento de los fenómenos de sincronización 
y el diseño de sistemas electrónicos robustos. Para 
crear un circuito memristivo caótico, basta con 
reemplazar el diodo de Chua en un circuito de Chua 
por un memristor, Fig. 3. 
 

 
Fig. 3: Circuito de Chua con memristor [5]. 

 
Por otro lado, la sincronización, es un fenómeno en 
el que dos o más sistemas alinean su dinámica a 
través del acoplamiento o la interacción. Esta 
desempeña un papel esencial en campos que van 
desde las comunicaciones seguras hasta la 
sincronización neuronal en la actividad cerebral [6]. 
La sincronización de circuitos caóticos memristivos 
o no, se da lugar cuando se interconecta dos o más 
circuitos idénticos a través de una resistencia de 
acoplamiento Fig.4. 
 

 
Fig. 4: Circuitos caóticos sincronizados 

 
Dado el creciente interés en las aplicaciones de 
circuitos memristivos para comprender mejor su 
comportamiento, el objetivo de este artículo es 
examinar la dinámica de los circuitos memristivos, 
identificar los mecanismos de sincronización y 
demostrar cómo las simulaciones numéricas pueden 
ofrecer información sobre su funcionalidad. En este 
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estudio se utilizó el lenguaje de programación 
Python que con sus bibliotecas versátiles como 
NumPy, SciPy y Matplotlib, proporciona una 
plataforma poderosa para modelar, analizar y 
visualizar sistemas complejos [7].   
 
2. TRABAJOS RELACIONADOS 
 
La exploración de circuitos memristivos ha ganado 
considerable atención en los últimos años debido a 
sus potenciales aplicaciones en áreas como la 
ingeniería neuromórfica, la comunicación basada en 
el caos y el modelado de sistemas complejos. Varios 
investigadores han profundizado en las propiedades 
dinámicas y los comportamientos de sincronización 
de estos circuitos, contribuyendo al creciente cuerpo 
de conocimientos. 
 
Ali et al. [8] realizaron un estudio exhaustivo sobre el 
modelado basado en memristores para aplicaciones 
neuromórficas. Esta investigación enfatizó la 
capacidad del memristor para emular la plasticidad 
sináptica, una característica esencial para 
desarrollar redes neuronales artificiales 
energéticamente eficientes. Los autores utilizaron 
técnicas de simulación para demostrar cómo se 
podían integrar elementos memristivos en sistemas 
neuromórficos, destacando su potencial para reducir 
el consumo de energía y mejorar la adaptabilidad en 
las implementaciones de hardware. Este trabajo 
sentó las bases de cómo se podían aprovechar los 
memristores para crear sistemas computacionales 
inspirados en el cerebro. 
 
Batista et al. [9] se centró en la sincronización de 
circuitos memristivos caóticos, empleando 
simulaciones numéricas para investigar cómo los 
mecanismos de acoplamiento podrían alinear el 
comportamiento de los componentes individuales. El 
estudio reveló que estrategias de acoplamiento 
específicas, como la retroalimentación lineal y no 
lineal, fueron efectivas para lograr la sincronización 
entre sistemas caóticos. Esta investigación 
proporcionó información crítica para diseñar 
circuitos con estabilidad y rendimiento mejorados, 
particularmente relevante para aplicaciones donde 
se necesita una actividad coordinada entre circuitos, 
como en el procesamiento distribuido y la 
transmisión segura de datos. 
 
Bao et al. [10] ampliaron la comprensión del 
comportamiento dinámico de los circuitos 
memristivos mediante el análisis de sus propiedades 
caóticas. Los investigadores utilizaron simulaciones 

numéricas para explorar la influencia de las 
condiciones iniciales variables y los cambios de 
parámetros en el comportamiento del circuito. El 
estudio demostró que los circuitos memristivos 
podrían exhibir patrones caóticos complejos, que 
podrían aprovecharse para aplicaciones prácticas 
como la generación de números aleatorios, 
algoritmos de cifrado y sistemas de comunicación 
seguros. Esta investigación subrayó la importancia 
de comprender y controlar el comportamiento 
caótico para aprovechar las capacidades únicas de 
los circuitos memristivos. 
 
Muthuswamy y Chua [5] contribuyeron con una 
exploración fundamental de la dinámica no lineal 
presente en circuitos basados en memristores, 
particularmente sistemas oscilatorios. Su 
investigación ilustró cómo estos circuitos podrían 
exhibir fenómenos como bifurcaciones y caos, que 
son características de los sistemas dinámicos 
complejos. Al simular estos comportamientos, el 
estudio proporcionó información crucial sobre las 
condiciones bajo las cuales los circuitos memristivos 
podrían pasar de estados oscilatorios estables a 
regímenes caóticos. Esta comprensión es esencial 
para diseñar circuitos que puedan evitar o 
aprovechar el comportamiento caótico, según la 
aplicación prevista. 
 
Estudios adicionales han explorado las aplicaciones 
y el control de la dinámica de los memristores en 
contextos más amplios. Por ejemplo, los 
investigadores han demostrado cómo se pueden 
incorporar los memristores al hardware para tareas 
que requieren aprendizaje adaptativo y 
procesamiento en tiempo real. Se ha demostrado 
que la naturaleza dependiente de la memoria del 
memristor facilita el comportamiento dependiente 
del estado, lo que lo hace adecuado para 
aplicaciones en filtros adaptativos y almacenamiento 
de memoria no volátil. 
 
En conjunto, estos estudios subrayan la naturaleza 
multifacética de la investigación de circuitos 
memristivos, desde sus propiedades fundamentales 
hasta sus aplicaciones prácticas. Los hallazgos 
destacan que la sincronización y el análisis del 
comportamiento dinámico son áreas clave de 
enfoque que continúan inspirando más 
investigaciones.  
Estos trabajos proporcionan una base sólida para el 
presente estudio que busca ampliar la comprensión 
del comportamiento y la sincronización de circuitos 
memristivos a través de simulaciones numéricas 
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avanzadas utilizando Python. Este enfoque permite 
una exploración detallada de la dinámica de 
circuitos, ofreciendo conocimientos prácticos para el 
diseño y desarrollo de sistemas electrónicos y 
computacionales innovadores. 
 
3. MATERIALES Y MÉTODOS 
 
Este trabajo tuvo como objetivo explorar el 
comportamiento dinámico y las propiedades de 
sincronización de circuitos memristivos a través de 
simulaciones numéricas utilizando Python. La 
metodología abarca procedimientos detallados, 
materiales y un diseño experimental para garantizar 
la reproducibilidad de los resultados. 
 
3.1 Procedimiento 
El estudio se llevó a cabo en una serie de pasos 
estructurados, como se describe a continuación: 
 
Modelado de circuitos: Los modelos de circuitos 
memristivos se construyeron en función de 
representaciones matemáticas previamente 
validadas de memristores, específicamente 
utilizando las ecuaciones diferenciales no lineales 
que describen su relación voltaje-corriente, las 
cuales se introducen en el circuito de Leon Chua 
para estudiar cómo afectan las propiedades caóticas. 
 

 Circuito de Chua 
 
El circuito de Chua es un sistema no lineal que 
genera un comportamiento caótico, y su dinámica 
está gobernada por un conjunto de ecuaciones 
diferenciales adimensionales, que describen el 
voltaje del primer condensador , del segundo 
condensador  y la corriente  del inductor, como se 
muestra a continuación: 

 
Además de la función no lineal  
 

 
Donde  son constantes que dependen de 
los valores específicos del circuito. 

Las ecuaciones descritas capturan cómo los voltajes 
y corrientes en el circuito evolucionan con el tiempo, 
y la presencia de no linealidades hace que el sistema 
muestre un comportamiento caótico para ciertos 
valores de los parámetros [5]. 
 
Configuración de simulación numérica: Se eligió 
Python como el software principal debido a sus 
amplias bibliotecas para el cálculo numérico y la 
visualización, así como por su naturaleza libre y 
abierta. Se emplearon bibliotecas como NumPy, 
SciPy y Matplotlib para realizar cálculos, resolver 
ecuaciones diferenciales y representar gráficamente 
los resultados. 
Configuración de parámetros iniciales: Las 
condiciones iniciales y los valores de los parámetros 
(por ejemplo, rango de resistencia, estado inicial de 
memristividad y voltaje de entrada) se definieron 
cuidadosamente en función de la literatura para 
reflejar escenarios típicos del mundo real. 
Ejecución de la simulación: Las ecuaciones 
diferenciales que describen los circuitos memristivos 
se resolvieron utilizando métodos de integración 
numérica, como el método Runge-Kutta, 
implementado a través de la función odeint en SciPy. 
Esto permitió la simulación del comportamiento del 
circuito durante un período de tiempo determinado. 
Análisis de sincronización: Se simularon circuitos 
acoplados para evaluar las propiedades de 
sincronización. Se analizó el bloqueo de fase y 
frecuencia entre circuitos mediante la 
representación gráfica de la evolución temporal de 
los estados memristivos. 
Registro y análisis de datos: Se registraron y 
analizaron los datos de salida para identificar 
comportamientos como oscilaciones periódicas y 
estados caóticos. Se generaron gráficos y métricas 
numéricas para visualización e interpretación. 
 
3.2 Materiales 
El estudio utilizó los siguientes materiales: 
Software: Python (versión 3.9+): para codificar y 
ejecutar simulaciones. 
Bibliotecas: NumPy (para operaciones numéricas), 
SciPy (para solucionadores de ecuaciones 
diferenciales), Matplotlib (para visualización de 
datos) y Seaborn (para mejorar los gráficos). 
Hardware: Una estación de trabajo estándar 
equipada con un procesador Intel i7, 16 GB de RAM 
y un SSD de 1 TB para el almacenamiento y 
procesamiento de datos. 
 
 
 

 

 

 

(1) 

 (2) 
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3.3 Diseño experimental 
El diseño experimental incluyó los siguientes 
componentes: 
 
Modelo de simulación: El estudio involucró 
modelos de circuito único y de circuitos acoplados. 
Se llevaron a cabo simulaciones de circuito único 
para comprender el comportamiento independiente, 
mientras que se utilizaron modelos acoplados para 
investigar las propiedades de sincronización. 
 
Selección de parámetros: Los principales 
parámetros en el experimento incluyeron la forma de 
onda del voltaje de entrada (entrada sinusoidal o de 
paso periódico), las condiciones iniciales de 
memristancia y la fuerza de acoplamiento entre 
circuitos en modelos sincronizados. 
 
Métricas de salida: Las métricas principales 
incluyeron histéresis del memristor, la evolución de 
la memristancia, voltajes y corrientes a lo largo del 
tiempo y la sincronización, según el tipo de análisis. 
El diseño experimental se estructuró para replicar las 
condiciones del mundo real lo más fielmente posible, 
manteniendo al mismo tiempo un entorno controlado 
para observar respuestas específicas de los circuitos 
memristantes. 
 
Siguiendo el procedimiento descrito, utilizando los 
materiales especificados y adhiriendo al diseño 
experimental, este estudio tuvo como objetivo 
analizar y documentar exhaustivamente el 
comportamiento dinámico y los mecanismos de 
sincronización de los circuitos memristivos utilizando 
Python. 
 
4.   RESULTADOS Y DISCUSIÓN 
 
En esta sección se muestran los modelos que se 
derivan de la aplicación de las leyes de Kirchhoff al 
circuito original de Chua, reemplazando el diodo no 
lineal por un memristor. Este cambio introduce 
ecuaciones diferenciales que describen cómo 
evolucionan los voltajes y corrientes, incorporando la 
dinámica no lineal del memristor. Las ecuaciones 
incluyen términos de acoplamiento dinámico para 
estudiar la sincronización entre sistemas 
inicialmente desincronizados, manteniendo las 
propiedades caóticas del diseño original. A 
continuación, se presentan los resultados obtenidos 
a partir de tres modelos diferentes: Stanford, 
Memristico-Chua y Memductor. 

 
Modelo de Stanford 
 
Representa la dinámica de memristores basada en 
la evolución del gap físico en un filamento, con una 
dependencia no lineal del voltaje y parámetros 
térmicos, su histéresis, Fig.5, muestra una transición 
suave en la relación corriente-voltaje. 

 
Fig. 5: Histéresis del memristor - modelo de Stanford. 
R_on= 100, R_off= 1600, = 0.03 y β= 0.9 v(t)= Asin 
(2π.f.t), A= 1, f= 1Hz. 
 
El sistema de ecuaciones que describe el modelo de 
Stanford es el siguiente [11]: 
 

 
El atractor caótico del modelo presenta una 
estructura compleja Fig.6 y refleja la interacción 
entre el voltaje aplicado y el gap físico del memristor. 
A medida que varía el campo eléctrico, el atractor 
muestra una trayectoria no lineal que oscila de 
manera irregular, con un comportamiento 
impredecible y una dependencia marcada de las 
condiciones iniciales:  
 

 

 

 

 

(3) 

 (4) 
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Fig. 6: Atractor caótico del modelo Chua-Stanford. 

 , ,   
    
   . 

 
Para corroborar el comportamiento caótico de la 
sincronización del modelo de Stanford, se plantean 
diferentes condiciones iniciales para dos circuitos 
idénticos conectados entre sí, Fig.7, asegurando que 
comiencen desde estados distintos y, mediante un 
acoplamiento adecuado, logren sincronizarse con el 
tiempo. 

 
 
Fig. 7: Sincronización de dos circuitos – modelo de 
Stanford 
 
Las condiciones iniciales son: 
 

 

 

 

Y las ecuaciones para la sincronización de sistemas 
caóticos son: 
 

 

 

Sistema 1 

 
Sistema 2 

 

Para la sincronización, se emplea un factor de 
acoplamiento basado en la resistencia y ajustando la 
evolución del gap físico, se observa cómo ambos 
sistemas, aunque inicialmente diferentes, logran 
sincronizarse y seguir trayectorias comunes Fig.8. 
 

Fig. 8: Señales sincronizadas partiendo de condiciones 
iniciales distintas, modelo de Stanford con factor de 
acoplamiento K=1.1. 
 
Modelo memristivo de Chua 
 
Describe sistemas electrónicos no lineales con 
memoria y caos, destacando una característica 
función que introduce múltiples estados de equilibrio 

 

 

 

 

(5) 

 

 

 

 

(6) 
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y trayectorias complejas. Es el modelo conceptual 
base para los memristores, su histéresis Fig.9, 
refleja una dinámica caótica, con múltiples puntos de 
equilibrio y una dependencia fuerte de las 
características no lineales del sistema, el cálculo de 
la histéresis utiliza los mismos parámetros descritos 
en el modelo de Stanford. 

 
Fig. 9: Histéresis del memristor - modelo de Chua 

 
Sistema de ecuaciones del modelo memristivo de 
Chua [12]: 
 

 

 

El atractor caótico Fig.10, muestra una trayectoria 
compleja y oscilatoria, que cambia de forma 
impredecible debido a su alta sensibilidad a las 
condiciones iniciales . 
Representa el comportamiento caótico del sistema, 
caracterizado por patrones irregulares y no 
repetitivos. 

Fig. 10: Atractor caótico del modelo de Chua. 
     

 . 
 
Sincronización de dos sistemas caóticos. 
 
Se considera la sincronización como una 
herramienta para validar el estado caótico del 
sistema Fig.11; partiendo de condiciones iniciales 
diferentes, se emplea una interacción entre los 
sistemas controlada por un término de acoplamiento 
en las ecuaciones diferenciales. Este proceso 
asegura que, a pesar de la complejidad y la 
naturaleza caótica de los atractores, ambos 
sistemas pueden converger hacia trayectorias 
sincronizadas con el tiempo, evidenciando la 
estabilidad relativa en un contexto de caos. 
 

 
Fig. 11: Sincronización de dos circuitos – modelo de 
Chua.  
 
Ecuaciones para la sincronización de sistemas 
caóticos 
 
Condiciones iniciales: 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

(7) 

 (8) 
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Sistema 1 
 

 
Sistema 2 

 

La sincronización en el modelo de Chua Fig.12, se 
logra mediante un factor de acoplamiento que fuerza 
a dos sistemas a seguir trayectorias similares, 
incluso con condiciones iniciales diferentes. Esto 
permite que ambos sistemas se alineen con el 
tiempo, superando su comportamiento caótico. 

 
Fig. 12: Señales sincronizadas partiendo de condiciones 

iniciales distintas-modelo de Chua. K=0.55e4. 
 
Modelo Memductor 
 
Es un modelo general de memristor que enfatiza la 
memoria intrínseca basada en la integración de 
carga o flujo, con una respuesta lineal local y un 
comportamiento dinámico ajustable según la señal 
aplicada, su histéresis muestra un bucle más 
estrecho y una fuerte dependencia del historial del 

sistema, con una memoria que modula la relación 
voltaje-corriente de manera distintiva Fig.13. 
Igualmente, para el cálculo de la histéresis se utilizan 
los parámetros descritos en el modelo de Stanford. 

Fig. 13: Histéresis del memristor - modelo de memductor 
 

El sistema de ecuaciones del modelo Memductor es 
el siguiente [13]: 
 

El atractor caótico del Memductor es más 
impredecible comparado con los otros dos modelos 
Fig.14, pero sigue mostrando un comportamiento no 
lineal y dependiente de la memoria del sistema. Su 
forma refleja la evolución controlada por la carga o 
flujo, con trayectorias complejas que se adaptan a 
las condiciones impuestas por el acoplamiento. 

 
Fig. 14: Atractor caótico del modelo de memristor. , 

, , , ,  y . 
 
Sincronización de dos sistemas caoticos  
 
Para el Memductor, la sincronización se plantea 
iniciando ambos sistemas desde estados iniciales 
diferentes y permitiéndoles interactuar mediante un 
acoplamiento proporcional a la memoria intrínseca 

 

 

 

 

(9) 

 

 

 

 

(10) 
 

 

 

 

(11) 
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del sistema. Este enfoque demuestra cómo, incluso 
en sistemas que dependen fuertemente de su 
historial, las trayectorias pueden alinearse en 
función del tiempo Fig.15. 

 
 
Fig. 15: Sincronización de dos circuitos – modelo de 
memristor.  
 
Ecuaciones para la sincronización de sistemas 
caóticos. 
 
Condiciones iniciales: 
 

 

 

 

Sistema 1 

 
Sistema 2 

 
Para sincronizar el modelo se aplica un factor de 
acoplamiento basado en la memoria intrínseca del 
sistema, ambos atractores logran sincronizarse a lo 
largo del tiempo Fig.16, independientemente de sus 
condiciones iniciales, mostrando que el sistema 
puede estabilizarse con el acoplamiento adecuado. 
 

 
Fig. 16: Señales sincronizadas partiendo de condiciones 
iniciales distintas-modelo de Memristor. K=3  
 

DISCUSIÓN  
 
Las simulaciones de los modelos estudiados 
evidencian la presencia de atractores caóticos en las 
proyecciones bidimensionales, destacando la 
complejidad de sus dinámicas. En todos los casos, 
se observó la sincronización de las trayectorias en 
de las variables tras un periodo transitorio gracias al 
término de acoplamiento dinámico, asegurando 
coherencia en el estado sincronizado. Las gráficas 
bidimensionales resaltan la estructura compleja de 
los atractores y validan la efectividad del diseño, al 
comparar sistemas acoplados y no acoplados. 
 
Modelo Chua-Stanford: 
La sincronización de los atractores caóticos logrado 
mediante un factor de acoplamiento, confirma la 
viabilidad de estabilizar sistemas caóticos con 
memristores. Este hallazgo es consistente con 
estudios previos, como los de Di Marco et al., y 
expande el conocimiento sobre la aplicación de 
sistemas memristivos en fenómenos no lineales. 
 
Modelo Experimental Basado en Chua: 
La sincronización observada en atractores 
complejos es consistente con los trabajos de 
Muthuswamy y Chua, demostrando la viabilidad 
experimental de estos sistemas en entornos reales. 
La sincronización eficaz entre los atractores destaca 
la capacidad de los memristores para estabilizar 
dinámicas caóticas. 
 
Modelo Memductor: 
El memductor demuestra su capacidad para generar 
atractores bidimensionales y curvas de histéresis, 
con la sincronización de los atractores mostrando la 
viabilidad de controlar el caos mediante 
acoplamientos basados en memoria. Estos 

 

 

 

 

(12) 
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resultados respaldan hallazgos previos y amplían su 
aplicación en sistemas controlados. 
  
5.     CONCLUSIÓN  
 
Los modelos estudiados resaltan la capacidad de 
Python como herramienta clave para el análisis y 
desarrollo de sistemas dinámicos complejos, 
destacando su utilidad en la implementación de 
simulaciones numéricas, la resolución de 
ecuaciones diferenciales y la visualización de 
atractores caóticos mediante bibliotecas como 
NumPy, Matplotlib y SciPy. Estas herramientas 
permitieron abordar las dinámicas no lineales 
introducidas por los memristores y estudiar la 
sincronización de variables específicas en sistemas 
caóticos, abriendo potenciales aplicaciones en 
criptografía, comunicaciones seguras y análisis de 
redes neuronales. Python no solo facilitó el manejo 
eficiente de estos modelos, sino que también 
evidenció su potencial como plataforma esencial en 
la investigación científica de sistemas no lineales. 
Como trabajos futuros, se propone desarrollar 
bibliotecas personalizadas que automaticen el 
análisis de modelos dinámicos y explorar la 
integración de Python con tecnologías como 
inteligencia artificial y computación simbólica para 
optimizar la resolución de problemas matemáticos 
complejos, posicionando a Python como una 
herramienta interdisciplinaria en matemáticas 
avanzadas y modelado computacional. 
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ANEXO: 
 

 

Anexo 1: Código histéresis del memristor – Modelo Stanford 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Parámetros 
R_on = 100  # Resistencia en estado "on"  
R_off = 1600  # Resistencia en estado "off" 
alpha = 0.03  # Velocidad de cambio de la resistencia 
beta = 0.9  # Trayectoria de histéresis 
 
# Tiempo y voltaje senoidal 
tiempo = np.arange(0, 2, 0.01)  
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)   
 
# Inicialización de corriente y carga 
corriente = np.zeros_like(voltaje_senoidal) 
q = 0   
 
# Función de resistencia 
def calcular_resistencia_stanford(q, R_on, R_off, beta): 
    return R_on + (R_off - R_on) * (1 - np.exp(-beta * np.abs(q))) 
 
# Simulación 
for i, V in enumerate(voltaje_senoidal): 
    q += alpha * V * (1 - beta * np.abs(q))  # carga 
    R = calcular_resistencia_stanford(q, R_on, R_off, beta) 
    corriente[i] = V / R 
 
# Gráfica 
plt.figure(figsize=(10, 5)) 
plt.plot(voltaje_senoidal, corriente, label="Stanford", color="blue") 
plt.xlabel("Voltaje (V)") 
plt.ylabel("Corriente (A)") 
plt.title("Curva de Histéresis - Modelo Stanford") 
plt.grid(True) 
plt.legend() 
plt.show() 
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Anexo 2: Código sincronización de dos circuitos caóticos – Modelo Stanford 
 
import numpy as np 
from scipy.integrate import solve_ivp 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
# Parámetros del sistema 
alpha = 10 
beta = 15 
a = -1.27 
b = -0.68 
q = 1.6e-19 
k = 1.38e-23 
T0 = 300 
Ea_g = 0.8 
a0 = 1e-10 
l = 10e-9 
gamma0 = 2.5 
g_min = 0.5e-9 
g_max = 6.0e-9 
V0 = 1.0 
# Constante de acoplamiento 
coupling_strength = 1.1 
 
# Función no lineal 
def f(x): 
    return b * x + 0.5 * (a - b) * (np.abs(x + 1) - np.abs(x - 1)) 
 
# Sincronización 
def synchronized_system(t, state): 
    x1, y1, z1, g1, x2, y2, z2, g2 = state 
 
    # gaps  
    g1 = np.clip(g1, g_min, g_max) 
    g2 = np.clip(g2, g_min, g_max) 
 
    # Sistema 1 
    dx1_dt = alpha * (y1 - x1 - f(x1)) 
    dy1_dt = x1 - y1 + z1 
    dz1_dt = -beta * y1 
    dg1_dt = -np.exp(-q * Ea_g * g1 / (k * T0)) * np.exp(q * a0 * gamma0 / (l * k * T0) * x1) 
 
    # Sistema 2 
    dx2_dt = alpha * (y2 - x2 - f(x2)) 
    dy2_dt = x2 - y2 + z2 
    dz2_dt = -beta * y2 + coupling_strength * (z1 - z2)  
    dg2_dt = -np.exp(-q * Ea_g * g2 / (k * T0)) * np.exp(q * a0 * gamma0 / (l * k * T0) * x2) 
 
    return [dx1_dt, dy1_dt, dz1_dt, dg1_dt, dx2_dt, dy2_dt, dz2_dt, dg2_dt] 
 
# Condiciones iniciales 
x0_m, y0_m, z0_m, g0_m = 0.1, 0, 0, g_min 
x0_s, y0_s, z0_s, g0_s = 0.2, 0.1, -0.1, g_max 
initial_conditions = [x0_m, y0_m, z0_m, g0_m, x0_s, y0_s, z0_s, g0_s] 
 
 
 



136

Revista TECH Carlos Cisneros ISNN 2737-6036, Año 2024, Número IV, páginas 20 

# Parámetros 
t_span = (0, 50) 
t_eval = np.linspace(t_span[0], t_span[1], 5000) 
 
# Resolución 
solution = solve_ivp( 
    synchronized_system, 
    t_span, 
    initial_conditions, 
    t_eval=t_eval, 
    method="RK45" 
) 
t = solution.t 
x1, y1, z1, g1, x2, y2, z2, g2 = solution.y 
 
# Gráficas 
plt.figure(figsize=(12, 10)) 
# Maestro-esclavo (x1 vs x2 y x2 vs x1) 
plt.subplot(2, 2, 1) 
plt.plot(x1, y1, 'b', label="x1") 
plt.plot(x2, y2, 'r', label="x2 ") 
plt.xlabel('x1') 
plt.ylabel('x2') 
plt.title('Espacio de fases (x1 vs x2)') 
plt.legend() 
plt.grid(True) 
# Sincronización 
plt.subplot(2, 2, 2) 
plt.plot(t, z1, 'b', label="z1") 
plt.plot(t, z2, 'r', label="z2 ") 
plt.xlabel('Tiempo') 
plt.ylabel('z (t)') 
plt.title('Sincronización de z1 y z2') 
plt.legend() 
plt.grid(True) 
 
# Gap 
plt.subplot(2, 2, 3) 
plt.plot(t, g1, 'b', label="g1") 
plt.plot(t, g2, 'r', label="g2 ") 
plt.xlabel('Tiempo (s)') 
plt.ylabel('g') 
plt.title('Evolución del gap (g)') 
plt.legend() 
plt.grid(True) 
 
# Atractores 3D  
ax = plt.subplot(2, 2, 4, projection='3d') 
ax.plot(x1, y1, z1, 'b', label="x1") 
ax.plot(x2, y2, z2, 'r', label="x2") 
ax.set_xlabel('x1') 
ax.set_ylabel('x2') 
ax.set_zlabel('z') 
ax.set_title('Atractores 3D') 
ax.legend() 
ax.grid(True) 
 
plt.tight_layout() 
plt.show() 
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Anexo 3: Código histéresis del memristor – Modelo Chua 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Parámetros  
R_on = 100  # Resistencia en estado "on" 
R_off = 1600  # Resistencia en estado "off" 
alpha = 0.03  # Controla la velocidad de cambio de la resistencia 
beta = 0.9  # Trayectoria de histéresis 
 
# Tiempo y voltaje senoidal 
tiempo = np.arange(0, 2, 0.01)   
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)   
 
# Inicialización de corriente y carga 
corriente = np.zeros_like(voltaje_senoidal) 
q = 0   
 
# Función de resistencia 
def calcular_resistencia_chua(q, R_on, R_off): 
    return R_on + (R_off - R_on) * (1 - q**2) 
 
# Simulación 
corriente_chua = np.zeros_like(voltaje_senoidal) 
q = 0   
 
for i, V in enumerate(voltaje_senoidal): 
    q += alpha * V * (1 - beta * q**2)   
    R = calcular_resistencia_chua(q, R_on, R_off) 
    corriente_chua[i] = V / R 
 
# Gráfica 
plt.figure(figsize=(10, 5)) 
plt.plot(voltaje_senoidal, corriente_chua, label="Chua", color="purple") 
plt.xlabel("Voltaje (V)") 
plt.ylabel("Corriente (A)") 
plt.title("Curva de Histéresis - Modelo Chua") 
plt.grid(True) 
plt.legend() 
plt.show() 
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Anexo 4: Código sincronización de dos circuitos caóticos – Modelo Chua 
 
import numpy as np 
from scipy.integrate import solve_ivp 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
# Parámetros  
alpha = -0.667e-3 
beta = 0.029e-3 
zeta = 8200 * 47e-9 
C1 = 6.8e-9 
C2 = 68e-9 
L = 18e-3 
R = 2000 
 
# Función de memductancia 
def W(phi): 
    return alpha + 3 * beta * phi**2 
 
# Sistema sincronizado 
def synchronized_system(t, state): 
    phi1, v1_1, v2_1, iL1, phi2, v1_2, v2_2, iL2 = state 
 
    # Sistema 1 
    dphi1_dt = -v1_1 / zeta 
    dv1_1_dt = (1 / C1) * ((v2_1 - v1_1) / R - W(phi1) * v1_1) 
    dv2_1_dt = (1 / C2) * ((v1_1 - v2_1) / R - iL1) 
    diL1_dt = v2_1 / L 
 
    # Sistema 2 
    dphi2_dt = -v1_2 / zeta 
    dv1_2_dt = (1 / C1) * ((v2_2 - v1_2) / R - W(phi2) * v1_2) 
    dv2_2_dt = (1 / C2) * ((v1_2 - v2_2) / R - iL2) 
    diL2_dt = v2_2 / L 
 
    # Acoplamiento 
    coupling_strength = 0.55e4   
    dv2_2_dt += coupling_strength * (v2_1 - v2_2) 
 
    return [dphi1_dt, dv1_1_dt, dv2_1_dt, diL1_dt, dphi2_dt, dv1_2_dt, dv2_2_dt, diL2_dt] 
 
# Condiciones iniciales 
initial_conditions = [0, 0.1, 0.1, 0, 0, -0.1, -0.1, 0] 
 
# Tiempo 
t_span = (0, 0.01) 
t_eval = np.linspace(t_span[0], t_span[1], 5000) 
 
# Sistema sincronizado 
solution = solve_ivp(synchronized_system, t_span, initial_conditions, t_eval=t_eval, 
method='RK45') 
t = solution.t 
phi1, v1_1, v2_1, iL1, phi2, v1_2, v2_2, iL2 = solution.y 
 
# Gráficas 
plt.figure(figsize=(12, 10)) 
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# Gráfico 2D: v2_1 vs v1_1 y v2_2 vs v1_2 
plt.subplot(2, 2, 1) 
plt.plot(v1_1, v2_1, label='Sistema 1', linewidth=0.8) 
plt.plot(v1_2, v2_2, label='Sistema 2', linewidth=0.8) 
plt.xlabel(r'$v_1(t)$ (V)') 
plt.ylabel(r'$v_2(t)$ (V)') 
plt.title('Atractor 2D: $v_2$ vs $v_1$') 
plt.legend() 
plt.grid(True)   
 
# Gráfico 2D: Sincronización de v2_1 y v2_2 
plt.subplot(2, 2, 2) 
plt.plot(t, v2_1, label='$v_{2,1}(t)$', linewidth=0.8) 
plt.plot(t, v2_2, label='$v_{2,2}(t)$', linewidth=0.8) 
plt.xlabel('Tiempo (s)') 
plt.ylabel(r'$v_2(t)$ (V)') 
plt.title('Sincronización de $v_{2,1}$ y $v_{2,2}$') 
plt.legend() 
plt.grid(True)   
 
# Gráfico 2D: phi1 vs iL1 y phi2 vs iL2 
plt.subplot(2, 2, 3) 
plt.plot(phi1, iL1, label='Sistema 1', linewidth=0.8) 
plt.plot(phi2, iL2, label='Sistema 2', linewidth=0.8) 
plt.xlabel(r'$\phi(t)$ (Wb)') 
plt.ylabel(r'$i_L(t)$ (A)') 
plt.title(r'Atractor 2D: $i_L$ vs $\phi$') 
plt.legend() 
plt.grid(True)  
 
# Gráfico 3D: v1_1, v2_1, phi1 y v1_2, v2_2, phi2 
ax = plt.subplot(2, 2, 4, projection='3d') 
ax.plot(v1_1, v2_1, phi1, color='blue', linewidth=0.5, label='Sistema 1') 
ax.plot(v1_2, v2_2, phi2, color='red', linewidth=0.5, label='Sistema 2') 
ax.set_xlabel(r'$v_1(t)$ (V)') 
ax.set_ylabel(r'$v_2(t)$ (V)') 
ax.set_zlabel(r'$\phi(t)$ (Wb)') 
ax.set_title('Atractores 3D') 
ax.legend() 
ax.grid(True)   
 
# Título 
plt.suptitle('Sincronización de Sistemas Memristivos', fontsize=14) 
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
plt.show() 
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Anexo 5: Código histéresis del memristor – Modelo Memductor 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Parámetros  
R_on = 100  # Resistencia en estado "on" 
R_off = 1600  # Resistencia en estado "off" 
alpha = 0.03  # Controla la velocidad de cambio de la resistencia 
beta = 0.9  # Trayectoria de histéresis 
 
# Tiempo y voltaje senoidal 
tiempo = np.arange(0, 2, 0.01)   
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)   
 
# Inicialización de corriente y carga 
corriente = np.zeros_like(voltaje_senoidal) 
q = 0   
 
# Función de resistencia  
def calcular_resistencia_memductor(q, V, R_on, R_off): 
    return R_on + (R_off - R_on) * (1 - np.tanh(10 * V * q)) 
 
# Simulación 
corriente_memductor = np.zeros_like(voltaje_senoidal) 
q = 0   
 
for i, V in enumerate(voltaje_senoidal): 
    q += alpha * V * (1 - beta * q**2)   
    R = calcular_resistencia_memductor(q, V, R_on, R_off) 
    corriente_memductor[i] = V / R 
 
# Gráfica 
plt.figure(figsize=(10, 5)) 
plt.plot(voltaje_senoidal, corriente_memductor, label="Memductor", color="orange") 
plt.xlabel("Voltaje (V)") 
plt.ylabel("Corriente (A)") 
plt.title("Curva de Histéresis - Modelo memductor") 
plt.grid(True) 
plt.legend() 
plt.show() 
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Anexo 6: Código sincronización de dos circuitos caóticos – Modelo Memductor 
 

 
import numpy as np 
from scipy.integrate import solve_ivp 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
# Sistema de ecuaciones diferenciales 
def chaotic_system(t, state): 
    x, y, z, u = state 
    dx_dt = 4 * x + 16 * y + 0.1 * u - 2 * x * u**2 
    dy_dt = x - y + z 
    dz_dt = -15 * y - 0.5 * z 
    du_dt = -x 
    return [dx_dt, dy_dt, dz_dt, du_dt] 
 
# Sincronización:  
def synchronized_system(t, state): 
    x1, y1, z1, u1, x2, y2, z2, u2 = state 
 
    # Sistema 1 
    dx1_dt = 4 * x1 + 16 * y1 + 0.1 * u1 - 2 * x1 * u1**2 
    dy1_dt = x1 - y1 + z1 
    dz1_dt = -15 * y1 - 0.5 * z1 
    du1_dt = -x1 
 
    # Sistema 2  
    dx2_dt = 4 * x2 + 16 * y2 + 0.1 * u2 - 2 * x2 * u2**2 
    dy2_dt = x2 - y2 + z2 
    dz2_dt = -15 * y2 - 0.5 * z2 + 3 * (z1 - z2)   
    du2_dt = -x2 
 
    return [dx1_dt, dy1_dt, dz1_dt, du1_dt, dx2_dt, dy2_dt, dz2_dt, du2_dt] 
 
# Parámetros 
t_span = (0, 48)   
t_eval = np.linspace(t_span[0], t_span[1], 5000)   
 
# Condiciones iniciales  
initial_conditions = [0.1, -0.1, 0.1, -0.1, -0.5, 0.2, -0.2, 0.1] 
 
# Solucion 
solution = solve_ivp( 
    synchronized_system,  
    t_span,  
    initial_conditions,  
    t_eval=t_eval,  
    method="RK45" 
) 
 
# Solucion 
t = solution.t 
x1, y1, z1, u1, x2, y2, z2, u2 = solution.y 
 
# Graficas 
plt.figure(figsize=(12, 10)) 
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# Gráfico 2D: x1 vs y1 y x2 vs y2 
plt.subplot(2, 2, 1) 
plt.plot(x1, y1, 'b', linewidth=0.8, label="Sistema 1") 
plt.plot(x2, y2, 'r', linewidth=0.8, label="Sistema 2") 
plt.xlabel(r'$x(t)$') 
plt.ylabel(r'$y(t)$') 
plt.title(r'Atractor 2D: $x$ vs $y$') 
plt.legend() 
plt.grid(True)  
 
# sincronización 
plt.subplot(2, 2, 2) 
plt.plot(t, z1, 'b', linewidth=0.8, label="z1") 
plt.plot(t, z2, 'r', linewidth=0.8, label="z2") 
plt.xlabel('Tiempo') 
plt.ylabel(r'$z(t)$') 
plt.title(r'Sincronización de $z_1$ y $z_2$') 
plt.legend() 
plt.grid(True)  
 
# Gráfico 2D: y1 vs u1 y y2 vs u2 
plt.subplot(2, 2, 3) 
plt.plot(y1, u1, 'b', linewidth=0.8, label="Sistema 1") 
plt.plot(y2, u2, 'r', linewidth=0.8, label="Sistema 2") 
plt.xlabel(r'$y(t)$') 
plt.ylabel(r'$u(t)$') 
plt.title(r'Atractor 2D: $y$ vs $u$') 
plt.legend() 
plt.grid(True)   
 
# Gráfico 3D: x1, y1, z1 y x2, y2, z2 
ax = plt.subplot(2, 2, 4, projection='3d') 
ax.plot(x1, y1, z1, color='blue', linewidth=0.5, label="Sistema 1") 
ax.plot(x2, y2, z2, color='red', linewidth=0.5, label="Sistema 2") 
ax.set_xlabel(r'$x(t)$') 
ax.set_ylabel(r'$y(t)$') 
ax.set_zlabel(r'$z(t)$') 
ax.set_title('Atractores 3D') 
ax.legend() 
ax.grid(True) 
 
# Título 
plt.suptitle('Sincronización de Sistemas Caóticos', fontsize=14) 
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
plt.show() 
 


