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RESUMEN

Este estudio investiga el comportamiento dinamico y las propiedades de sincronizacion de los circuitos
memristivos mediante simulaciones numéricas utilizando Python. Los circuitos memristivos, conocidos por sus
caracteristicas no lineales y dependientes de la memoria, son de gran interés para aplicaciones en computacion
neuromorfica y comunicaciones seguras. La investigacion empleé modelos matematicos de memristores y utilizd
las bibliotecas computacionales de Python para simular la dindmica de los circuitos y analizar los mecanismos
de sincronizacion en sistemas acoplados. La metodologia incluyd la construccion de modelos basados en
ecuaciones diferenciales, su resolucion numérica mediante el método de Runge-Kutta y la visualizacién de los
resultados. Se observaron y analizaron comportamientos clave, como oscilaciones periddicas y estados cadticos,
y se estudiaron las propiedades de sincronizacion simulando circuitos acoplados. Se exploraron tres modelos
representativos: Chua-Stanford, Memductor y un modelo experimental basado en Chua. Los resultados indican
que los memristores inducen un comportamiento de histéresis que amplifica la complejidad dinamica y facilita la
sincronizacién de sistemas inicialmente no sincronizados a través de un factor de acoplamiento. Con el tiempo,
los circuitos evolucionan hacia un comportamiento coherente, demostrando cémo el caos puede ser controlado
y sincronizado. Finalmente, este estudio demuestra la utilidad de las simulaciones basadas en Python para
avanzar en la comprension del comportamiento de los circuitos memristivos y sus posibles aplicaciones en
sistemas electrénicos y computacionales.

Palabras clave: Circuitos de Chua, Memristores, Python, Sincronizacion, Histéresis, Memductor.
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ABSTRACT

This study investigates the dynamic behavior and synchronization properties of memristive circuits through
numerical simulations using Python. Memristive circuits, known for their non-linear and memory-dependent
characteristics, are of significant interest for applications in neuromorphic computing and secure
communications. The research employed mathematical models of memristors and used Python’s
computational libraries to simulate circuit dynamics and analyze synchronization mechanisms in coupled
systems. The methodology involved constructing differential equation-based models, solving them numerically
using the Runge-Kutta method, and visualizing the results. Key behaviors such as periodic oscillations, and
chaotic states were observed and analyzed, and synchronization properties were studied by simulating coupled
circuits. Three representative models are explored: Chua-Stanford, Memductor, and an experimental Chua-
based model. The results indicate that memristors induce hysteresis behavior, which amplifies dynamic
complexity and facilitates synchronization of initially unsynchronized systems through a coupling factor. Over
time, the circuits evolve towards coherent behavior, demonstrating how chaos can be controlled and
synchronized. Finally, this study demonstrates the utility of Python-based simulations in advancing the
understanding of memristive circuit behavior and their potential applications in electronic and computational
systems.

Keywords: Chua circuits, Memristors, Synchronization, Hysteresis, Memductor, Python.
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1. INTRODUCCION

Los circuitos memristivos han surgido como un area
crucial de estudio dentro de la electronica moderna
debido a sus propiedades unicas y aplicaciones
potenciales en campos como la computacion
neuromorfica, el almacenamiento de memoria y la
computacion analdgica. El memristor,
conceptualizado originalmente por Leon Chua en
1971, es un elemento de circuito pasivo no lineal que
vincula la carga eléctrica y el flujo magnético [1],
Fig.1.
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Fig. 1: Estructura del memristor [2].

A diferencia de los elementos de un circuito
tradicionales (resistencias, condensadores e
inductores), los memristores exhiben un
comportamiento dependiente de la memoria, lo que
les permite "recordar" sus estados anteriores cuando
se corta la energia. Esta caracteristica los hace
particularmente prometedores para crear circuitos
que pueden imitar redes neuronales bioldgicas y
sistemas complejos [3].

A este comportamiento se lo denomina histéresis
Fig.2, presenta una forma de lazo cerrado y muestra
la relaciéon entre el voltaje aplicado (eje x) y la
corriente resultante (eje y). A medida que el voltaje
cambia de direccion, la curva no sigue la misma
trayectoria evidenciando que la resistencia cambia
en funcién de la carga acumulada, y la corriente no
retorna a su posicion original al invertir el voltaje [1].

Fig. 2: Histéresis clasica del memristor

El comportamiento dinamico de los circuitos
memristivos involucra interacciones intrincadas
influenciadas por sus propiedades no lineales, lo que
resulta en dinamicas ricas y complejas [4]. Estas
dinamicas pueden exhibir comportamientos como
oscilaciones, bifurcaciones y respuestas cadticas, lo
que hace que su estudio sea crucial para avanzar en
el conocimiento de los fendmenos de sincronizacion
y el disefio de sistemas electronicos robustos. Para
crear un circuito memristivo cadtico, basta con
reemplazar el diodo de Chua en un circuito de Chua
por un memristor, Fig. 3.

Circuito Cadtico basado en Memristor
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Fig. 3: Circuito de Chua con memristor [5].

Por otro lado, la sincronizacién, es un fendémeno en
el que dos o mas sistemas alinean su dinamica a
través del acoplamiento o la interaccion. Esta
desempefia un papel esencial en campos que van
desde las comunicaciones seguras hasta la
sincronizacion neuronal en la actividad cerebral [6].
La sincronizacién de circuitos caéticos memristivos
0 no, se da lugar cuando se interconecta dos o mas
circuitos idénticos a través de una resistencia de
acoplamiento Fig.4.

Sincronizaciée de clrcsitos cabticos
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Fig. 4: Circuitos cadticos sincronizados

Dado el creciente interés en las aplicaciones de
circuitos memristivos para comprender mejor su
comportamiento, el objetivo de este articulo es
examinar la dinamica de los circuitos memristivos,
identificar los mecanismos de sincronizacion y
demostrar como las simulaciones numéricas pueden
ofrecer informacion sobre su funcionalidad. En este
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estudio se utilizé el lenguaje de programacion
Python que con sus bibliotecas versatiles como
NumPy, SciPy y Matplotlib, proporciona una
plataforma poderosa para modelar, analizar y
visualizar sistemas complejos [7].

2. TRABAJOS RELACIONADOS

La exploracién de circuitos memristivos ha ganado
considerable atencion en los ultimos afios debido a
sus potenciales aplicaciones en areas como la
ingenieria neuromorfica, la comunicacién basada en
el caos y el modelado de sistemas complejos. Varios
investigadores han profundizado en las propiedades
dinamicas y los comportamientos de sincronizacion
de estos circuitos, contribuyendo al creciente cuerpo
de conocimientos.

Ali et al. [8] realizaron un estudio exhaustivo sobre el
modelado basado en memristores para aplicaciones
neuromorficas. Esta investigacién enfatizé la
capacidad del memristor para emular la plasticidad
sinaptica, una caracteristica esencial para
desarrollar redes neuronales artificiales
energéticamente eficientes. Los autores utilizaron
técnicas de simulacién para demostrar como se
podian integrar elementos memristivos en sistemas
neuromorficos, destacando su potencial para reducir
el consumo de energia y mejorar la adaptabilidad en
las implementaciones de hardware. Este trabajo
sentd las bases de como se podian aprovechar los
memristores para crear sistemas computacionales
inspirados en el cerebro.

Batista et al. [9] se centré en la sincronizaciéon de
circuitos memristivos  cadticos, empleando
simulaciones numéricas para investigar como los
mecanismos de acoplamiento podrian alinear el
comportamiento de los componentes individuales. El
estudio reveld que estrategias de acoplamiento
especificas, como la retroalimentacion lineal y no
lineal, fueron efectivas para lograr la sincronizacién
entre sistemas cadticos. Esta investigacion
proporcioné informacién critica para disenar
circuitos con estabilidad y rendimiento mejorados,
particularmente relevante para aplicaciones donde
se necesita una actividad coordinada entre circuitos,
como en el procesamiento distribuido y la
transmision segura de datos.

Bao et al. [10] ampliaron la comprension del
comportamiento  dinamico de los circuitos
memristivos mediante el analisis de sus propiedades
cadticas. Los investigadores utilizaron simulaciones

numeéricas para explorar la influencia de las
condiciones iniciales variables y los cambios de
parametros en el comportamiento del circuito. El
estudio demostré6 que los circuitos memristivos
podrian exhibir patrones cadticos complejos, que
podrian aprovecharse para aplicaciones practicas
como la generacion de numeros aleatorios,
algoritmos de cifrado y sistemas de comunicacion
seguros. Esta investigaciéon subrayo la importancia
de comprender y controlar el comportamiento
cadtico para aprovechar las capacidades Unicas de
los circuitos memristivos.

Muthuswamy y Chua [5] contribuyeron con una
exploracion fundamental de la dinamica no lineal
presente en circuitos basados en memristores,
particularmente sistemas oscilatorios. Su
investigacion ilustr6 como estos circuitos podrian
exhibir fenédmenos como bifurcaciones y caos, que
son caracteristicas de los sistemas dinamicos
complejos. Al simular estos comportamientos, el
estudio proporciond informacion crucial sobre las
condiciones bajo las cuales los circuitos memristivos
podrian pasar de estados oscilatorios estables a
regimenes caoticos. Esta comprension es esencial
para disenar circuitos que puedan evitar o
aprovechar el comportamiento cadtico, segun la
aplicacion prevista.

Estudios adicionales han explorado las aplicaciones
y el control de la dinamica de los memristores en
contextos mas amplios. Por ejemplo, los
investigadores han demostrado como se pueden
incorporar los memristores al hardware para tareas
que requieren aprendizaje = adaptativo vy
procesamiento en tiempo real. Se ha demostrado
que la naturaleza dependiente de la memoria del
memristor facilita el comportamiento dependiente
del estado, lo que lo hace adecuado para
aplicaciones en filtros adaptativos y almacenamiento
de memoria no volatil.

En conjunto, estos estudios subrayan la naturaleza
multifacética de la investigacién de circuitos
memristivos, desde sus propiedades fundamentales
hasta sus aplicaciones practicas. Los hallazgos
destacan que la sincronizacion y el andlisis del
comportamiento dinamico son areas clave de
enfoque que  contindan inspirando  mas
investigaciones.

Estos trabajos proporcionan una base sélida para el
presente estudio que busca ampliar la comprension
del comportamiento y la sincronizacion de circuitos
memristivos a través de simulaciones numéricas
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avanzadas utilizando Python. Este enfoque permite
una exploracion detallada de la dinamica de
circuitos, ofreciendo conocimientos practicos para el
disefio y desarrollo de sistemas electronicos y
computacionales innovadores.

3. MATERIALES Y METODOS

Este trabajo tuvo como objetivo explorar el
comportamiento dinamico y las propiedades de
sincronizacion de circuitos memristivos a través de
simulaciones numéricas utilizando Python. La
metodologia abarca procedimientos detallados,
materiales y un disefio experimental para garantizar
la reproducibilidad de los resultados.

3.1 Procedimiento
El estudio se llevd a cabo en una serie de pasos
estructurados, como se describe a continuacion:

Modelado de circuitos: Los modelos de circuitos
memristivos se construyeron en funcién de
representaciones matematicas previamente
validadas de memristores, especificamente
utilizando las ecuaciones diferenciales no lineales
que describen su relacién voltaje-corriente, las
cuales se introducen en el circuito de Leon Chua
para estudiar como afectan las propiedades cadticas.

e Circuito de Chua

El circuito de Chua es un sistema no lineal que
genera un comportamiento cadtico, y su dinamica
estd gobernada por un conjunto de ecuaciones
diferenciales adimensionales, que describen el
voltaje del primer condensador x, del segundo
condensador y y la corriente z del inductor, como se
muestra a continuacion:

dx
E:“(y—x—f(x))
Yy _ (1)
E—x—y+z
dz_
E——BY

Ademas de la funcién no lineal f(x)

FX) =bx+0.5@—b).(x+1—lx—1) (&

Donde a, 3, a y b son constantes que dependen de
los valores especificos del circuito.

Las ecuaciones descritas capturan como los voltajes
y corrientes en el circuito evolucionan con el tiempo,
y la presencia de no linealidades hace que el sistema
muestre un comportamiento cadtico para ciertos
valores de los parametros [5].

Configuracion de simulacion numérica: Se eligio
Python como el software principal debido a sus
amplias bibliotecas para el calculo numérico y la
visualizacion, asi como por su naturaleza libre y
abierta. Se emplearon bibliotecas como NumPy,
SciPy y Matplotlib para realizar célculos, resolver
ecuaciones diferenciales y representar graficamente
los resultados.

Configuraciéon de parametros iniciales: Las
condiciones iniciales y los valores de los parametros
(por ejemplo, rango de resistencia, estado inicial de
memristividad y voltaje de entrada) se definieron
cuidadosamente en funcién de la literatura para
reflejar escenarios tipicos del mundo real.
Ejecucion de la simulacion: Las ecuaciones
diferenciales que describen los circuitos memristivos
se resolvieron utilizando métodos de integracion
numérica, como el método Runge-Kutta,
implementado a través de la funcién odeint en SciPy.
Esto permitié la simulacion del comportamiento del
circuito durante un periodo de tiempo determinado.
Anadlisis de sincronizacion: Se simularon circuitos
acoplados para evaluar las propiedades de
sincronizacion. Se analizé el bloqueo de fase y
frecuencia entre circuitos mediante la
representacion grafica de la evolucién temporal de
los estados memristivos.

Registro y analisis de datos: Se registraron y
analizaron los datos de salida para identificar
comportamientos como oscilaciones periédicas y
estados cadticos. Se generaron graficos y métricas
numeéricas para visualizacion e interpretacion.

3.2 Materiales

El estudio utilizo los siguientes materiales:
Software: Python (version 3.9+): para codificar y
ejecutar simulaciones.

Bibliotecas: NumPy (para operaciones numéricas),
SciPy (para solucionadores de ecuaciones
diferenciales), Matplotlib (para visualizacion de
datos) y Seaborn (para mejorar los graficos).
Hardware: Una estacion de trabajo estandar
equipada con un procesador Intel i7, 16 GB de RAM
y un SSD de 1 TB para el almacenamiento y
procesamiento de datos.
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3.3 Diseino experimental
El disefio experimental incluyé los siguientes
componentes:

Modelo de simulacion: El estudio involucro
modelos de circuito Unico y de circuitos acoplados.
Se llevaron a cabo simulaciones de circuito Unico
para comprender el comportamiento independiente,
mientras que se utilizaron modelos acoplados para
investigar las propiedades de sincronizacion.

Seleccion de parametros: Los principales
parametros en el experimento incluyeron la forma de
onda del voltaje de entrada (entrada sinusoidal o de
paso periédico), las condiciones iniciales de
memristancia y la fuerza de acoplamiento entre
circuitos en modelos sincronizados.

Métricas de salida: Las métricas principales
incluyeron histéresis del memristor, la evolucion de
la memristancia, voltajes y corrientes a lo largo del
tiempo y la sincronizacion, segun el tipo de analisis.
El disefio experimental se estructurd parareplicar las
condiciones del mundo real lo mas fielmente posible,
manteniendo al mismo tiempo un entorno controlado
para observar respuestas especificas de los circuitos
memristantes.

Siguiendo el procedimiento descrito, utilizando los
materiales especificados y adhiriendo al disefio
experimental, este estudio tuvo como objetivo
analizar y documentar exhaustivamente el
comportamiento dinamico y los mecanismos de
sincronizacion de los circuitos memristivos utilizando
Python.

4. RESULTADOS Y DISCUSION

En esta seccién se muestran los modelos que se
derivan de la aplicacién de las leyes de Kirchhoff al
circuito original de Chua, reemplazando el diodo no
lineal por un memristor. Este cambio introduce
ecuaciones diferenciales que describen cémo
evolucionan los voltajes y corrientes, incorporando la
dindmica no lineal del memristor. Las ecuaciones
incluyen términos de acoplamiento dinamico para
estudiar la  sincronizacion entre  sistemas
inicialmente desincronizados, manteniendo las
propiedades cadticas del disefio original. A
continuacion, se presentan los resultados obtenidos
a partir de tres modelos diferentes: Stanford,
Memristico-Chua y Memductor.

Modelo de Stanford

Representa la dinamica de memristores basada en
la evolucion del gap fisico en un filamento, con una
dependencia no lineal del voltaje y parametros
térmicos, su histéresis, Fig.5, muestra una transicion
suave en la relacion corriente-voltaje.

Fig. 5: Histéresis del memristor - modelo de Stanford.
R on= 100, R_off= 1600, o= 0.03 y = 0.9 v(t)= Asin
(2n.f1), A= 1, f= 1Hz.

El sistema de ecuaciones que describe el modelo de
Stanford es el siguiente [11]:

dx

E:“(y—x—f(x))
y— —
E—x y+z (3)
dz
- Py
dg _ (_q-Ea-g) e(— %Yo
dt k.Ty /) LkT, "

f)=bx+0.5@—b).(x+1—x-1) @

El atractor caodtico del modelo presenta una
estructura compleja Fig.6 y refleja la interaccion
entre el voltaje aplicado y el gap fisico del memristor.
A medida que varia el campo eléctrico, el atractor
muestra una trayectoria no lineal que oscila de
manera irregular, con un comportamiento
impredecible y una dependencia marcada de las
condiciones iniciales: [x,y, z, g] = [0.1,0,0,0.5¢ — 9].
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Espaclo de Fases: x vs ¥

Fig. 6: Atractor cadtico del modelo Chua-Stanford. &=
10, p = 15, q = 1.6e7'°, T, = 300, E, = 0.8, a, =
1e710, [=10e™° y,=25 k=138e"23, g, =
0.5e7° g, =6e7? a=-127b=—0.68.

Para corroborar el comportamiento cadtico de la
sincronizacion del modelo de Stanford, se plantean
diferentes condiciones iniciales para dos circuitos
idénticos conectados entre si, Fig.7, asegurando que
comiencen desde estados distintos y, mediante un
acoplamiento adecuado, logren sincronizarse con el
tiempo.
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Fig. 7: Sincronizacion de dos circuitos — modelo de
Stanford

Las céhdiciones inicialéd son:

[x1,¥1,21,91] = [0.1,—0.1,0.1, —0.1]
[xZ,yz, Z'_;Zigz] = [_05, 02, _02, 01]

Y las ecuationes para f& sincronizacién de sistemas
cadticos son:

™

Y

TECH12 @/

Sistema 1
dx1
dr =& (}’1 — X1 - f(x1))
d
% =X1—Y11+2
)]
d21 _
dg, _ q.-E,.dg, q.a9.Yo
——=-e|- - . X1)
dt k.T, Lk.T,
Sistema 2
dx
d_tz =« (}’z — X2 — f(xz))
d
% =Xy — Y21+ 2,
p (6)
VA
d_tz =—By; + K(z, — z3)
dg; (_q-Ea-ng) (- L %Yo s
dt — k.T, LkTy

Para la sincronizacion, se emplea un factor de
acoplamiento basado en la resistencia y ajustando la
evolucién del gap fisico, se observa cémo ambos
sistemas, aunque inicialmente diferentes, logran
sincronizarse y seguir trayectorias comunes Fig.8.

Sincronizacion de 21 y 22
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o 10 20 30 a0 50
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Fig. 8: Seriales sincronizadas partiendo de condiciones

iniciales distintas, modelo de Stanford con factor de

acoplamiento K=1.1.
Modelo memristivo de Chua
Describe sistemas electronicos no lineales con

memoria y caos, destacando una caracteristica
funcion que introduce multiples estados de equilibrio
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y trayectorias complejas. Es el modelo conceptual
base para los memristores, su histéresis Fig.9,
refleja una dinamica caotica, con multiples puntos de
equilibrio y wuna dependencia fuerte de las
caracteristicas no lineales del sistema, el calculo de
la histéresis utiliza los mismos parametros descritos
en el modelo de Stanford.

Curva ae Histéesls - Modelo Crus

Fig. 9: Histeresis del memristor - modelo de Chua

Sistema de ecuaciones del modelo memristivo de
Chua [12]:

d@_v1
dt ¢
dv 1 v,—v
@ -6 Cr WO
! (7)
dp 1 vi—v, |
at ¢ r W
diy v,
dt L

El atractor cadtico Fig.10, muestra una trayectoria
compleja y oscilatoria, que cambia de forma
impredecible debido a su alta sensibilidad a las
condiciones iniciales [¢), v4, v,, 1] =[0,0.1,0.1,0].
Representa el comportamiento cadtico del sistema,
caracterizado por patrones irregulares y no
repetitivos.

Atractor 2D: vy va vy

Fig. 10: Atractor caotico del mbdelo de Chua. Cy = C, =
6.98, L=18e™3, R =2000, {=3.854e™* =
—0.667¢73, B =0.029¢73.

Sincronizacion de dos sistemas caodticos.

Se considera la sincronizacibn como una
herramienta para validar el estado cadtico del
sistema Fig.11; partiendo de condiciones iniciales
diferentes, se emplea una interaccion entre los
sistemas controlada por un término de acoplamiento
en las ecuaciones diferenciales. Este proceso
asegura que, a pesar de la complejidad y la
naturaleza cadtica de los atractores, ambos
sistemas pueden converger hacia trayectorias
sincronizadas con el tiempo, evidenciando Ia
estabilidad relativa en un contexto de caos.

! v2~. _59?'.. v]: m V2 Rpot V1 ‘m
LY 4T
L1 é".? c1 12l lL' la « =]

! T T ;

Ll L1 1 T |

Fig. 11: Sincronizacion de dos circuitos — modelo de
Chua.

Ecuaciones para la sincronizacién de sistemas
cadticos

Condiciones iniciales:
[¢1, 171‘1, U2,1’ iLl] = [0, 01, 01, 0]

[¢2, ULZ, 1]2‘2, iLZ] = [0, _0.1, _0.1, 0]
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Sistema 1
49, __vis
dt
dv 1 v —v
d;,1 _ a(% - W(®1).v11)
(9)
de,l _ l(vl.l - 172,1 —i )
dt C, R "
@ = m
dt L
Sistema 2
a0, _ _viz
dt
dv 1 vy, —v
12 _ 1 V227 V12 W(D;).v412)
dt C, R (10)
Doz 1 (2= Vaz_y )
dt C, R "
+. k(vy1-122)
diz _ Va2
dt L

La sincronizacion en el modelo de Chua Fig.12, se
logra mediante un factor de acoplamiento que fuerza
a dos sistemas a seguir trayectorias similares,
incluso con condiciones iniciales diferentes. Esto
permite que ambos sistemas se alineen con el
tiempo, superando su comportamiento cadtico.

Sincronizacion de v 1 Y vz 3

win
o

viale)

v atel

©.000 0002 0004 0.000 0.000 0010
Tiempo {s)

Fig. 12: Seniales sincronizadas partiendo de condiciones
iniciales distintas-modelo de Chua. K=0.55¢".

Modelo Memductor

Es un modelo general de memristor que enfatiza la
memoria intrinseca basada en la integracién de
carga o flujo, con una respuesta lineal local y un
comportamiento dinamico ajustable segun la sefial
aplicada, su histéresis muestra un bucle mas
estrecho y una fuerte dependencia del historial del

sistema, con una memoria que modula la relacion
voltaje-corriente de manera distintiva Fig.13.
Igualmente, para el calculo de la histéresis se utilizan
los parametros descritos en el modelo de Stanford.

urva @n Malereds - Moden ot

Fig. 13: Histéresis del memristor - modelo de memductor

El sistema de ecuaciones del modelo Memductor es
el siguiente [13]:
x = 4x + 16y + 0.1u — 2xu?
y=X-—-y+ z
z=—-15y— 0.5z

(11)

uU=—-x

El atractor cadtico del Memductor es mas
impredecible comparado con los otros dos modelos
Fig.14, pero sigue mostrando un comportamiento no
lineal y dependiente de la memoria del sistema. Su
forma refleja la evolucién controlada por la carga o
flujo, con trayectorias complejas que se adaptan a
las condiciones impuestas por el acoplamiento.

Atractor 2D: x vs ¥

-.lltl -'; 7-.') ': 10

xit
Fig. 14: Atractor cadtico del modelo de memristor. a = 4,
b=16,c=01,d=-2,e=-15f=-05yg=3.

Sincronizacién de dos sistemas caoticos

Para el Memductor, la sincronizacién se plantea
iniciando ambos sistemas desde estados iniciales
diferentes y permitiéndoles interactuar mediante un
acoplamiento proporcional a la memoria intrinseca
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del sistema. Este enfoque demuestra como, incluso
en sistemas que dependen fuertemente de su
historial, las trayectorias pueden alinearse en
funcién del tiempo Fig.15.

MW\

Fig. 15: Sincronizacion de dos circuitos — modelo de
memristor.

Ecu aylone?é1 para la sincronizacion de sistemas
caoticos.

Condiciones iniciales:

[0.1,0,0,0.5¢ — 9]
[0.2,0.1,—0.1, 6e — 9]

(X1, y1,21,u4] =

[x2,¥2, 22, U] =

Sistema 1
xl = 4'x1 + 16y1 + 0 1u1 - 2x1‘ui

ylle_yl-l_zl (12)
—15y1— 0.521
il1=—x1

Sistema 2
x:z = 4x2 + 16y2 + 0. 1u2 - leu%

y2=x2 _y2+ZZ (13)
z); = _15y2 - 0. 522 + 3(Z1 — Zz)

ilz = —X3

Para sincronizar el modelo se aplica un factor de
acoplamiento basado en la memoria intrinseca del
sistema, ambos atractores logran sincronizarse a lo
largo del tiempo Fig.16, independientemente de sus
condiciones iniciales, mostrando que el sistema
puede estabilizarse con el acoplamiento adecuado.

Sincronizacion de 21 y 23

> |f"".l'{,',»‘"' \I"
J\“[H] " a'|‘|w| kH
H

t,)" Mim,] il

—r - - ——— - S
10 20 30 A0 50

Tempo

Nt

Fig. 16: Seriales sincronizadas partiendo de condiciones
iniciales distintas-modelo de Memristor. K=3.

DISCUSION

Las simulaciones de los modelos estudiados
evidencian la presencia de atractores caéticos en las
proyecciones bidimensionales, destacando Ila
complejidad de sus dindmicas. En todos los casos,
se observo la sincronizacion de las trayectorias en
de las variables tras un periodo transitorio gracias al
término de acoplamiento dinamico, asegurando
coherencia en el estado sincronizado. Las graficas
bidimensionales resaltan la estructura compleja de
los atractores y validan la efectividad del disefio, al
comparar sistemas acoplados y no acoplados.

Modelo Chua-Stanford:

La sincronizacion de los atractores caoticos logrado
mediante un factor de acoplamiento, confirma la
viabilidad de estabilizar sistemas cadticos con
memristores. Este hallazgo es consistente con
estudios previos, como los de Di Marco et al., y
expande el conocimiento sobre la aplicacion de
sistemas memristivos en fendmenos no lineales.

Modelo Experimental Basado en Chua:

La sincronizacion observada en atractores
complejos es consistente con los trabajos de
Muthuswamy y Chua, demostrando la viabilidad
experimental de estos sistemas en entornos reales.
La sincronizacion eficaz entre los atractores destaca
la capacidad de los memristores para estabilizar
dindmicas cadticas.

Modelo Memductor:

El memductor demuestra su capacidad para generar
atractores bidimensionales y curvas de histéresis,
con la sincronizacion de los atractores mostrando la
viabilidad de controlar el caos mediante
acoplamientos basados en memoria. Estos
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resultados respaldan hallazgos previos y amplian su
aplicacion en sistemas controlados.

5. CONCLUSION

Los modelos estudiados resaltan la capacidad de
Python como herramienta clave para el analisis y
desarrollo de sistemas dinamicos complejos,
destacando su utilidad en la implementacién de
simulaciones numéricas, la resoluciéon de
ecuaciones diferenciales y la visualizacion de
atractores cadticos mediante bibliotecas como
NumPy, Matplotlib y SciPy. Estas herramientas
permitieron abordar las dinamicas no lineales
introducidas por los memristores y estudiar la
sincronizacion de variables especificas en sistemas
cadticos, abriendo potenciales aplicaciones en
criptografia, comunicaciones seguras y analisis de
redes neuronales. Python no solo facilité el manejo
eficiente de estos modelos, sino que también
evidencié su potencial como plataforma esencial en
la investigacion cientifica de sistemas no lineales.
Como trabajos futuros, se propone desarrollar
bibliotecas personalizadas que automaticen el
analisis de modelos dinamicos y explorar la
integraciéon de Python con tecnologias como
inteligencia artificial y computacion simbdlica para
optimizar la resoluciéon de problemas matematicos
complejos, posicionando a Python como una
herramienta interdisciplinaria en matematicas
avanzadas y modelado computacional.
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ANEXO:

Anexo 1: Cddigo histéresis del memristor — Modelo Stanford

import numpy as np
import matplotlib.pyplot as plt

# Pardmetros

R_on = 100 # Resistencia en estado "on"

R_off = 1600 # Resistencia en estado "off"

alpha = 0.03 # Velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

# Tiempo y voltaje senoidal
tiempo = np.arange(9, 2, 0.01)
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)

# Inicializacion de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q=29

# Funcion de resistencia
def calcular_resistencia_stanford(q, R_on, R_off, beta):
return R_on + (R_off - R_on) * (1 - np.exp(-beta * np.abs(q)))

# Simulacion

for i, V in enumerate(voltaje senoidal):
q += alpha * V * (1 - beta * np.abs(q)) # carga
R = calcular_resistencia_stanford(q, R_on, R_off, beta)
corriente[i] =V / R

# Grdfica

plt.figure(figsize=(10, 5))

plt.plot(voltaje senoidal, corriente, label="Stanford", color="blue")
plt.xlabel("Voltaje (V)")

plt.ylabel("Corriente (A)")

plt.title("Curva de Histéresis - Modelo Stanford")

plt.grid(True)

plt.legend()

plt.show()
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Anexo 2: Cadigo sincronizacion de dos circuitos cadticos — Modelo Stanford

import numpy as np

from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Pardmetros del sistema

alpha = 10
beta = 15

a = -1.27

b =-0.68

q = 1.6e-19

k = 1.38e-23
To = 300

Ea_g = 0.8

a0 = le-10

1 = 10e-9
gamma@ = 2.5

g min = 0.5e-9
g_max = 6.0e-9
Vo = 1.0

# Constante de acoplamiento
coupling strength = 1.1

# Funciodn no Llineal
def (x):
return b * x + 0.5 * (a - b) * (np.abs(x + 1) - np.abs(x - 1))

# Sincronizaciodn
def synchronized_system(t, state):
x1, yi, z1i, gl, x2, y2, z2, g2 = state

# gaps
gl = np.clip(gl, g _min, g_max)
g2 = np.clip(g2, g min, g max)

# Sistema 1

dx1_dt = alpha * (y1 - x1 - f(x1))

dyl dt = x1 - y1 + z1

dz1l_dt = -beta * yi

dgl dt = -np.exp(-q * Ea_g * g1 / (k * T@)) * np.exp(q * a@ * gamma® / (1 * k * T9) * x1)

# Sistema 2

dx2_dt = alpha * (y2 - x2 - f(x2))

dy2_dt = x2 - y2 + z2

dz2_dt = -beta * y2 + coupling strength * (z1 - z2)

dg2_dt = -np.exp(-q * Ea_g * g2 / (k * T@)) * np.exp(q * a@ * gamma® / (1 * k * TQ) * x2)

return [dx1_dt, dyl_dt, dzl_dt, dgl_dt, dx2_dt, dy2_dt, dz2_dt, dg2_dt]

# Condiciones iniciales

x0_m, yo m, z0_ m, go_m = 0.1, 0, 0, g min

X0_s, yo0_s, z0_s, go_s = 0.2, 0.1, -0.1, g _max

initial_conditions = [x@_m, y® m, z0 m, g0 _m, x0_ s, y0 s, z0_ s, go_s]
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# Pardmetros
t_span = (0, 50)
t_eval = np.linspace(t_span[0], t_span[1], 5000)

# Resolucion
solution = solve_ivp(
synchronized_system,
t_span,
initial_conditions,
t_eval=t_eval,
method="RK45"
)
t = solution.t
x1, y1, z1, g1, x2, y2, z2, g2 = solution.y

# Grdficas

plt.figure(figsize=(12, 10))

# Maestro-esclavo (x1 vs x2 y x2 vs x1)
plt.subplot(2, 2, 1)

plt.plot(x1l, y1, 'b', label="x1")
plt.plot(x2, y2, 'r', label="x2 ")
plt.xlabel('x1")

plt.ylabel('x2")

plt.title('Espacio de fases (x1 vs x2)")
plt.legend()

plt.grid(True)

# Sincronizacidn

plt.subplot(2, 2, 2)

plt.plot(t, z1, 'b', label="z1")
plt.plot(t, z2, 'r', label="z2 ")
plt.xlabel('Tiempo")

plt.ylabel('z (t)")
plt.title('Sincronizacidén de z1 y z2'")
plt.legend()

plt.grid(True)

# Gap

plt.subplot(2, 2, 3)

plt.plot(t, gl, 'b', label="gl")
plt.plot(t, g2, 'r', label="g2 ")
plt.xlabel('Tiempo (s)"')
plt.ylabel('g")
plt.title('Evolucidn del gap (g)')
plt.legend()

plt.grid(True)

# Atractores 3D

ax = plt.subplot(2, 2, 4, projection='3d")
ax.plot(x1, y1, z1, 'b', label="x1")
ax.plot(x2, y2, z2, 'r', label="x2")
ax.set xlabel('x1l')

ax.set_ylabel('x2")

ax.set_zlabel('z")
ax.set_title('Atractores 3D')

ax.legend()

ax.grid(True)

plt.tight layout()
plt.show()
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Anexo 3: Cadigo histéresis del memristor — Modelo Chua

import numpy as np
import matplotlib.pyplot as plt

# Pardmetros

R_on = 100 # Resistencia en estado "on"

R_off = 1600 # Resistencia en estado "off"

alpha = 0.3 # Controla La velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

# Tiempo y voltaje senoidal
tiempo = np.arange(0, 2, 0.01)
voltaje senoidal = np.sin(2 * np.pi * 1 * tiempo)

# Inicializacion de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q=29

# Funcion de resistencia
def calcular_resistencia_chua(qg, R_on, R_off):
return R_on + (R_off - R_on) * (1 - g**2)

# Simulacion
corriente_chua = np.zeros_like(voltaje_senoidal)
q=20

for i, V in enumerate(voltaje senoidal):
q += alpha * V * (1 - beta * gq**2)
R = calcular_resistencia_chua(q, R_on, R_off)
corriente_chua[i] =V / R

# Grdfica

plt.figure(figsize=(10, 5))

plt.plot(voltaje_senoidal, corriente_chua, label="Chua", color="purple")
plt.xlabel("Voltaje (V)")

plt.ylabel("Corriente (A)")

plt.title("Curva de Histéresis - Modelo Chua")

plt.grid(True)

plt.legend()

plt.show()
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Anexo 4: Codigo sincronizacion de dos circuitos cadticos — Modelo Chua

import numpy as np

from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Pardmetros

alpha = -0.667e-3
beta = 0.029%e-3
zeta = 8200 * 47e-9
Cl = 6.8e-9

C2 = 68e-9

L = 18e-3

R = 2000

# Funcion de memductancia
def W(phi):
return alpha + 3 * beta * phi**2

# Sistema sincronizado
def synchronized_system(t, state):
phil, vi_ 1, v2_1, ilLl1l, phi2, v1_2, v2 2, ilL2 = state

# Sistema 1

dphil_dt = -v1_1 / zeta

dvl 1 dt = (1 / C1) * ((v2_1 - vi 1) / R - W(phil) * vi_ 1)
dv2 1 dt = (1 / C2) * ((vi 1 - v2.1) /R - il1)

dill dt =v2.1 /L

# Sistema 2

dphi2_dt -vl 2 / zeta

dvl 2 dt = (1 / C1) * ((v2_2 - vi_2) / R - W(phi2) * vi_2)
dv2_2 dt = (1 / C2) * ((vi_2 - v2.2) / R - il2)

diL2_dt =v2 2 / L

# Acoplamiento
coupling_strength = 0.55e4
dv2_2_dt += coupling_strength * (v2_1 - v2_2)

return [dphil dt, dvi 1 dt, dv2_1 dt, dill_dt, dphi2_dt, dvi_2 dt, dv2_2 dt, dil2_dt]

# Condiciones iniciales
initial_conditions = [0, 0.1, 0.1, 0, @, -0.1, -0.1, Q]

# Tiempo
t_span = (0, 0.01)
t_eval = np.linspace(t_span[@], t_span[1], 5000)

# Sistema sincronizado

solution = solve_ivp(synchronized_system, t_span, initial_conditions, t_eval=t_eval,
method="'RK45")

t = solution.t

phil, vi 1, v2_1, ilLl1l, phi2, v1_2, v2 2, ilL2 = solution.y

# Grdficas
plt.figure(figsize=(12, 10))
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# Grdfico 2D: v2_1 vs v1_1 y v2 2 vs vl 2
plt.subplot(2, 2, 1)

plt.plot(vl_1, v2_1, label='Sistema 1', linewidth=0.8)
plt.plot(vl_2, v2_ 2, label='Sistema 2', linewidth=0.8)
plt.xlabel(r'g$v_1(t)$ (V)')

plt.ylabel(r'gv_2(t)$ (V)')

plt.title('Atractor 2D: $v_2$% vs $v_1%')

plt.legend()

plt.grid(True)

# Grdfico 2D: Sincronizacion de v2_1 y v2 2
plt.subplot(2, 2, 2)

plt.plot(t, v2_1, label="$v_{2,1}(t)$"', linewidth=0.8)
plt.plot(t, v2_2, label="$v_{2,2}(t)$', linewidth=0.8)
plt.xlabel('Tiempo (s)"')

plt.ylabel(r'gv_2(t)$ (V)')

plt.title('Sincronizacion de $v_{2,1}$ y $v_{2,2}%")
plt.legend()

plt.grid(True)

# Grdfico 2D: phil vs ilL1 y phi2 vs ilL2
plt.subplot(2, 2, 3)

plt.plot(phil, ilL1l, label='Sistema 1', linewidth=0.8)
plt.plot(phi2, iL2, label='Sistema 2', linewidth=0.8)
plt.xlabel(r'g\phi(t)$ (Wb)")

plt.ylabel(r'$i_L(t)$ (A)")

plt.title(r'Atractor 2D: $i_L$ vs $\phig')
plt.legend()

plt.grid(True)

# Grdfico 3D: vi1_1, v2_1, phil y vi_2, v2_2, phi2

ax = plt.subplot(2, 2, 4, projection='3d")

ax.plot(vl 1, v2_1, phil, color="blue', linewidth=0.5, label='Sistema 1')
ax.plot(vli_2, v2_2, phi2, color="red"', linewidth=0.5, label='Sistema 2")
ax.set_xlabel(r'gv_1(t)$ (V)')

ax.set_ylabel(r'gv_2(t)$ (V)")

ax.set_zlabel(r'$\phi(t)g§ (Wb)")

ax.set_title('Atractores 3D')

ax.legend()

ax.grid(True)

# Titulo

plt.suptitle('Sincronizacién de Sistemas Memristivos', fontsize=14)
plt.tight_layout(rect=[@, .03, 1, 0.95])

plt.show()
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Anexo 5: Cadigo histéresis del memristor — Modelo Memductor

import numpy as np
import matplotlib.pyplot as plt

# Pardmetros

R_on = 100 # Resistencia en estado "on"

R_off = 1600 # Resistencia en estado "off"

alpha = 0.3 # Controla La velocidad de cambio de la resistencia
beta = 0.9 # Trayectoria de histéresis

# Tiempo y voltaje senoidal
tiempo = np.arange(9, 2, 0.01)
voltaje_senoidal = np.sin(2 * np.pi * 1 * tiempo)

# Inicializacion de corriente y carga
corriente = np.zeros_like(voltaje_senoidal)
q=20

# Funcion de resistencia
def calcular_resistencia_memductor(q, V, R_on, R_off):
return R_on + (R_off - R_on) * (1 - np.tanh(10 * V * q))

# Simulacion
corriente_memductor = np.zeros_like(voltaje_senoidal)
qa=29

for i, V in enumerate(voltaje senoidal):
q += alpha * V * (1 - beta * gq**2)
R = calcular_resistencia_memductor(q, V, R_on, R_off)
corriente_memductor[i] =V / R

# Grdfica

plt.figure(figsize=(10, 5))

plt.plot(voltaje_senoidal, corriente_memductor, label="Memductor", color="orange")
plt.xlabel("Voltaje (V)")

plt.ylabel("Corriente (A)")

plt.title("Curva de Histéresis - Modelo memductor")

plt.grid(True)

plt.legend()

plt.show()
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Anexo 6: Codigo sincronizacion de dos circuitos cadticos — Modelo Memductor

import numpy as np

from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Sistema de ecuaciones diferenciales
def chaotic_system(t, state):
X, ¥, z, u = state
dx_dt =4 * x + 16 *y + 0.1 *u - 2 * x * u**2
dy dt = x -y + z
dz_dt -15 *y - 0.5 * z
du_dt = -x
return [dx_dt, dy dt, dz_dt, du_dt]

# Sincronizacion:
def synchronized_system(t, state):
x1, y1, z1, ul, x2, y2, z2, u2 = state

# Sistema 1
dx1 dt =4 * x1 + 16 * yl + 0.1 * ul - 2 * x1 * yl**2

dyl dt = x1 - y1 + z1

dzl_dt = -15 * y1 - 0.5 * z1
dul_dt = -x1

# Sistema 2

dx2_dt =4 * x2 + 16 * y2 + 0.1 * u2 - 2 * x2 * u2**2

dy2_dt = x2 - y2 + z2
dz2 dt = -15 * y2 - 0.5 * z2 + 3 * (z1 - z2)
du2_dt = -x2

return [dx1_dt, dyl_dt, dzl_dt, dul_dt, dx2_dt, dy2_dt, dz2_dt, du2_dt]

# Pardmetros
t_span = (9, 48)
t_eval = np.linspace(t_span[@], t_span[1], 5000)

# Condiciones 1iniciales
initial_conditions = [©.1, -0.1, 0.1, -0.1, -0.5, 0.2, -0.2, 0.1]

# Solucion

solution = solve_ivp(
synchronized _system,
t_span,
initial_conditions,
t_eval=t_eval,
method="RK45"

)

# Solucion
t = solution.t
x1, y1, z1i, ul, x2, y2, z2, u2 = solution.y

# Graficas
plt.figure(figsize=(12, 10))
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# Grdfico 2D: x1 vs y1 y x2 vs y2

plt.subplot(2, 2, 1)

plt.plot(x1, y1, 'b', linewidth=0.8, label="Sistema 1")
plt.plot(x2, y2, 'r', linewidth=0.8, label="Sistema 2")
plt.xlabel(r'$x(t)$")

plt.ylabel(r'$y(t)$")

plt.title(r'Atractor 2D: $x$ vs $y$')

plt.legend()

plt.grid(True)

# sincronizacion

plt.subplot(2, 2, 2)

plt.plot(t, z1, 'b', linewidth=0.8, label="z1")
plt.plot(t, z2, 'r', linewidth=0.8, label="z2")
plt.xlabel('Tiempo")

plt.ylabel(r'$z(t)$")
plt.title(r'Sincronizacioén de $z_1§ y $z_28")
plt.legend()

plt.grid(True)

# Grdfico 2D: y1 vs ul y y2 vs u2

plt.subplot(2, 2, 3)

plt.plot(yl, ul, 'b', linewidth=0.8, label="Sistema 1")
plt.plot(y2, u2, 'r', linewidth=0.8, label="Sistema 2")
plt.xlabel(r'$y(t)$")

plt.ylabel(r'gu(t)$"’)

plt.title(r'Atractor 2D: $y$ vs $ug')

plt.legend()

plt.grid(True)

# Grdfico 3D: x1, yi1, z1 y x2, y2, z2

ax = plt.subplot(2, 2, 4, projection='3d")

ax.plot(x1, yl, z1, color='blue', linewidth=0.5, label="Sistema 1")
ax.plot(x2, y2, z2, color="red', linewidth=0.5, label="Sistema 2")
ax.set_xlabel(r'g$x(t)$')

ax.set_ylabel(r'gy(t)$')

ax.set_zlabel(r'$z(t)$')

ax.set_title('Atractores 3D')

ax.legend()

ax.grid(True)

# Titulo

plt.suptitle('Sincronizacién de Sistemas Cadticos', fontsize=14)
plt.tight_layout(rect=[0, ©.03, 1, 0.95])

plt.show()
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