RASPBERRY PI AS A WEB SERVER: A PRACTICAL APPROACH FOR EDUCATIONAL ENVIRONMENTS
DOI:
https://doi.org/10.59540/tech.vi5.84Keywords:
Raspberry Pi, web server, Apache, networking, informational web pagesAbstract
This study addresses the implementation of a web server using a Raspberry Pi as a hosting platform for informational web pages. The research focuses on the selection of appropriate hardware and software, system configuration, and the development of an optimized web interface to facilitate access to academic information.
For the implementation, a Raspberry Pi 4 Model B with Raspberry Pi OS and Apache as the web server was used. The operating system was configured, network connections were established, and a web interface based on HTML and CSS was developed. Performance tests were conducted to evaluate loading times, stability, and resource consumption.
The results showed that the Raspberry Pi is a viable option for low-cost web servers, with reduced energy consumption and efficient traffic management. During stress tests, the system-maintained stability without interruptions in page loading. Additionally, resource usage analysis revealed that the CPU reached high peaks during periods of high demand, but without significantly affecting the user experience.
The project demonstrates that the Raspberry Pi is an accessible alternative for hosting academic information in institutions with limited resources. Continuous storage monitoring and server configuration optimization are recommended to ensure long-term performance
Downloads
References
M. J. López, X. Continente, E. Sánchez, and M. Bartroli, “Nota metodológica Intervenciones que incluyen webs y redes sociales: herramientas e indicadores para su evaluación Activities using websites and social networks: tools and indicators for evaluation,” Gac Sanit, vol. 31, no. 4, pp. 346–348, 2017, doi: 10.1016/j.gaceta.2016.12.006.
S. Wisnusenna, M. S. Yonatan, A. Wibisurya, Fanny, and T. Yuwono, “Model of Web Based Application to Control Bridge Traveler Using Raspberry Pi,” Procedia Comput Sci, vol. 135, pp. 518–525, Jan. 2018, doi: 10.1016/J.PROCS.2018.08.204.
V. Vujović and M. Maksimović, “Raspberry Pi as a Sensor Web node for home automation,” Computers & Electrical Engineering, vol. 44, pp. 153–171, May 2015, doi: 10.1016/J.COMPELECENG.2015.01.019.
F. Gómez-Estern, M. López-Martínez, and D. Muñoz de la Peña, “Sistema de Evaluación Automática VíaWeb en Asignaturas Prácticas de Ingeniería,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 3, pp. 111–119, Jul. 2010, doi: 10.1016/S1697-7912(10)70047-9.
P. Basanta-Val, M. García-Valls, and P. López-Anastasio, “Herramienta Web Ligera para La Programación en C-Concurrente,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 10, no. 4, pp. 465–476, Oct. 2013, doi: 10.1016/J.RIAI.2013.05.010.
A. Valero-Gómez, P. de la Puente, D. Rodriguez-Losada, M. Hernando, and P. S. Segundo, “Arquitectura de integración basada en Servicios Web para sistemas heterogéneos y distribuidos: aplicación a robots móviles interactivos,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 10, no. 1, pp. 85–95, Jan. 2013, doi: 10.1016/J.RIAI.2012.11.008.
M. Goubej and L. Bláha, “Raspberry Pi-based Motion Control Testbed for Mechatronics Education,” IFAC-PapersOnLine, vol. 55, no. 17, pp. 285–290, Jan. 2022, doi: 10.1016/J.IFACOL.2022.09.293.
R. K. Jain, “Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications,” Smart Agricultural Technology, vol. 4, p. 100215, Aug. 2023, doi: 10.1016/J.ATECH.2023.100215.
M. M. Islam et al., “A deep learning model for cotton disease prediction using fine-tuning with smart web application in agriculture,” Intelligent Systems with Applications, vol. 20, p. 200278, Nov. 2023, doi: 10.1016/J.ISWA.2023.200278.
Z. Peng, J. Li, and H. Hao, “Development and experimental verification of an IoT sensing system for drive-by bridge health monitoring,” Eng Struct, vol. 293, p. 116705, Oct. 2023, doi: 10.1016/J.ENGSTRUCT.2023.116705.
A. Morchid et al., “IoT-enabled fire detection for sustainable agriculture: A real-time system using flask and embedded technologies,” 2024, doi: 10.1016/j.rineng.2024.102705.
M. A. A. Radia, M. K. E. Nimr, and A. S. Atlam, “IoT-based wireless data acquisition and control system for photovoltaic module performance analysis,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, p. 100348, Dec. 2023, doi: 10.1016/J.PRIME.2023.100348.
N. Kortas, H. Azzabi, A. Ben Arbia, and J. B. Tahar, “Communication within Cloudlet using the Raspberry,” Procedia Comput Sci, vol. 73, pp. 193–198, Jan. 2015, doi: 10.1016/J.PROCS.2015.12.012.
R. Dhuny, A. A. I. Peer, N. A. Mohamudally, and N. Nissanke, “Performance evaluation of a portable single-board computer as a 3-tiered LAMP stack under 32-bit and 64-bit Operating Systems,” Array, vol. 15, p. 100196, Sep. 2022, doi: 10.1016/J.ARRAY.2022.100196.
P. Casado, J. M. Blanes, C. Torres, C. Orts, D. Marroquí, and A. Garrigós, “Raspberry Pi based photovoltaic I-V curve tracer,” HardwareX, vol. 11, p. e00262, Apr. 2022, doi: 10.1016/J.OHX.2022.E00262.
A. Fathy, A. Ben Atitallah, D. Yousri, H. Rezk, and M. Al-Dhaifallah, “A new implementation of the MPPT based raspberry Pi embedded board for partially shaded photovoltaic system,” Energy Reports, vol. 8, pp. 5603–5619, Nov. 2022, doi: 10.1016/J.EGYR.2022.04.035.
R. Dhuny and N. A. Mohamudally, “RPI64Box: A portable 3-tiered LAMP stack in a 64-bit Operating System environment,” Software Impacts, vol. 14, p. 100390, Dec. 2022, doi: 10.1016/J.SIMPA.2022.100390.
C. Petalotis, L. Krumpak, M. S. Floroiu, L. F. Ahmad, S. Athreya, and I. Malavolta, “An empirical study on the performance and energy costs of ads and analytics in mobile web apps,” Inf Softw Technol, vol. 166, p. 107370, Feb. 2024, doi: 10.1016/J.INFSOF.2023.107370.
A. Valera, A. Soriano, and M. Vallés, “Plataformas de Bajo Coste para la Realización de Trabajos Prácticos de Mecatrónica y Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 11, no. 4, pp. 363–376, Oct. 2014, doi: 10.1016/J.RIAI.2014.09.002.
K. Rzepka, P. Szary, K. Cabaj, and W. Mazurczyk, “Performance evaluation of Raspberry Pi 4 and STM32 Nucleo boards for security-related operations in IoT environments,” 2024, doi: 10.1016/j.comnet.2024.110252.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Renny Montalvo Armijos, Ana Cristina Guaño Alvarez, Luis Alberto Zabala Aguiar, Perkins Santiago Haro Parra

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








